Suppr超能文献

多任务 fMRI 数据中脑活动模式的联合稀疏表示。

Joint sparse representation of brain activity patterns in multi-task fMRI data.

出版信息

IEEE Trans Med Imaging. 2015 Jan;34(1):2-12. doi: 10.1109/TMI.2014.2340816. Epub 2014 Jul 24.

Abstract

A single-task functional magnetic resonance imaging (fMRI) experiment may only partially highlight alterations to functional brain networks affected by a particular disorder. Multivariate analysis across multiple fMRI tasks may increase the sensitivity of fMRI-based diagnosis. Prior research using multi-task analysis in fMRI, such as those that use joint independent component analysis (jICA), has mainly assumed that brain activity patterns evoked by different tasks are independent. This may not be valid in practice. Here, we use sparsity, which is a natural characteristic of fMRI data in the spatial domain, and propose a joint sparse representation analysis (jSRA) method to identify common information across different functional subtraction (contrast) images in data from a multi-task fMRI experiment. Sparse representation methods do not require independence, or that the brain activity patterns be nonoverlapping. We use functional subtraction images within the joint sparse representation analysis to generate joint activation sources and their corresponding sparse modulation profiles. We evaluate the use of sparse representation analysis to capture individual differences with simulated fMRI data and with experimental fMRI data. The experimental fMRI data was acquired from 16 young (age: 19-26) and 16 older (age: 57-73) adults obtained from multiple speech comprehension tasks within subjects, where an independent measure (namely, age in years) can be used to differentiate between groups. Simulation results show that this method yields greater sensitivity, precision, and higher Jaccard indexes (which measures similarity and diversity of the true and estimated brain activation sources) than does the jICA method. Moreover, superiority of the jSRA method in capturing individual differences was successfully demonstrated using experimental fMRI data.

摘要

单任务功能磁共振成像(fMRI)实验可能只能部分突出受特定疾病影响的功能大脑网络的改变。通过多个 fMRI 任务进行多元分析可能会提高基于 fMRI 的诊断的灵敏度。在 fMRI 中使用多任务分析的先前研究,例如使用联合独立成分分析(jICA)的研究,主要假设不同任务引起的大脑活动模式是独立的。但这在实践中可能并不成立。在这里,我们利用稀疏性,即 fMRI 数据在空间域中的自然特征,并提出了一种联合稀疏表示分析(jSRA)方法,以识别来自多任务 fMRI 实验的数据中不同功能减法(对比)图像之间的共同信息。稀疏表示方法不需要独立性,也不需要大脑活动模式是不重叠的。我们使用功能减法图像在联合稀疏表示分析中生成联合激活源及其相应的稀疏调制轮廓。我们使用模拟 fMRI 数据和实验 fMRI 数据评估稀疏表示分析在捕获个体差异方面的作用。实验 fMRI 数据是从 16 名年轻(年龄:19-26 岁)和 16 名年老(年龄:57-73 岁)成年人中获得的,他们在实验中进行了多项语音理解任务,其中独立的指标(即年龄)可用于区分组。模拟结果表明,与 jICA 方法相比,该方法在敏感性、精度和更高的 Jaccard 指数(用于衡量真实和估计的大脑激活源的相似性和多样性)方面具有更高的性能。此外,使用实验 fMRI 数据成功证明了 jSRA 方法在捕获个体差异方面的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验