Suppr超能文献

通过组级混合时空稀疏表示的多任务功能磁共振成像数据分类

Multitask fMRI Data Classification via Group-Wise Hybrid Temporal and Spatial Sparse Representations.

作者信息

Song Limei, Ren Yudan, Hou Yuqing, He Xiaowei, Liu Huan

机构信息

School of Information Science & Technology, Northwest University, Xi'an, 710127, China.

School of Information Science & Technology, Northwest University, Xi'an, 710127, China

出版信息

eNeuro. 2022 Jun 6;9(3). doi: 10.1523/ENEURO.0478-21.2022. Print 2022 May-Jun.

Abstract

Task-based functional magnetic resonance imaging (tfMRI) has been widely used to induce functional brain activities corresponding to various cognitive tasks. A relatively under-explored question is whether there exist fundamental differences in fMRI signal composition patterns that can effectively classify the task states of tfMRI data, furthermore, whether there exist key functional components in characterizing the diverse tfMRI signals. Recently, fMRI signal composition patterns of multiple tasks have been investigated via deep learning models, where relatively large populations of fMRI datasets are indispensable and the neurologic meaning of their results is elusive. Thus, the major challenges arise from the high dimensionality, low signal-to-noise ratio, interindividual variability, a small sample size of fMRI data, and the explainability of classification results. To address the above challenges, we proposed a computational framework based on group-wise hybrid temporal and spatial sparse representations (HTSSR) to identify and differentiate multitask fMRI signal composition patterns. Using relatively small cohorts of Human Connectome Project (HCP) tfMRI data as test-bed, the experimental results demonstrated that the multitask of fMRI data can be successfully classified with an average accuracy of 96.67%, where the key components in differentiating the multitask can be characterized, suggesting the effectiveness and explainability of the proposed method. Moreover, both task-related components and resting-state networks (RSNs) can be reliably detected. Therefore, our study proposed a novel framework that identifies the interpretable and discriminative fMRI composition patterns and can be potentially applied for controlling fMRI data quality and inferring biomarkers in brain disorders with small sample neuroimaging datasets.

摘要

基于任务的功能磁共振成像(tfMRI)已被广泛用于诱发与各种认知任务相对应的大脑功能活动。一个相对较少被探索的问题是,在功能磁共振成像信号组成模式中是否存在能够有效分类tfMRI数据任务状态的根本差异,此外,在表征多样的tfMRI信号时是否存在关键功能成分。最近,通过深度学习模型研究了多个任务的功能磁共振成像信号组成模式,其中相对大量的功能磁共振成像数据集是不可或缺的,但其结果的神经学意义难以捉摸。因此,主要挑战来自于功能磁共振成像数据的高维度、低信噪比、个体间变异性、小样本量以及分类结果的可解释性。为了应对上述挑战,我们提出了一种基于组混合时空稀疏表示(HTSSR)的计算框架,以识别和区分多任务功能磁共振成像信号组成模式。以人类连接体计划(HCP)的tfMRI数据的相对较小队列作为测试平台,实验结果表明,功能磁共振成像数据的多任务可以成功分类,平均准确率为96.67%,其中可以表征区分多任务的关键成分,这表明了所提出方法的有效性和可解释性。此外,与任务相关的成分和静息态网络(RSN)都可以被可靠地检测到。因此,我们的研究提出了一个新颖的框架,该框架能够识别可解释和有区分性的功能磁共振成像组成模式,并有可能应用于控制功能磁共振成像数据质量以及在小样本神经影像数据集中推断脑部疾病的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af2f/9186416/f5dc76a9d0f2/ENEURO.0478-21.2022_f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验