Suppr超能文献

挖掘阿尔茨海默病临床数据:减少自然衰老的影响以预测病情进展并识别亚型。

Mining Alzheimer's disease clinical data: reducing effects of natural aging for predicting progression and identifying subtypes.

作者信息

Han Tian, Peng Yunhua, Du Ying, Li Yunbo, Wang Ying, Sun Wentong, Cui Lanxin, Peng Qinke

机构信息

Systems Engineering Institute, School of Automation, Xi'an Jiaotong University, Xi'an, China.

Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Neurosci. 2024 Aug 14;18:1388391. doi: 10.3389/fnins.2024.1388391. eCollection 2024.

Abstract

INTRODUCTION

Because Alzheimer's disease (AD) has significant heterogeneity in encephalatrophy and clinical manifestations, AD research faces two critical challenges: eliminating the impact of natural aging and extracting valuable clinical data for patients with AD.

METHODS

This study attempted to address these challenges by developing a novel machine-learning model called tensorized contrastive principal component analysis (T-cPCA). The objectives of this study were to predict AD progression and identify clinical subtypes while minimizing the influence of natural aging.

RESULTS

We leveraged a clinical variable space of 872 features, including almost all AD clinical examinations, which is the most comprehensive AD feature description in current research. T-cPCA yielded the highest accuracy in predicting AD progression by effectively minimizing the confounding effects of natural aging.

DISCUSSION

The representative features and pathogenic circuits of the four primary AD clinical subtypes were discovered. Confirmed by clinical doctors in Tangdu Hospital, the plaques (18F-AV45) distribution of typical patients in the four clinical subtypes are consistent with representative brain regions found in four AD subtypes, which further offers novel insights into the underlying mechanisms of AD pathogenesis.

摘要

引言

由于阿尔茨海默病(AD)在脑萎缩和临床表现方面存在显著异质性,AD研究面临两个关键挑战:消除自然衰老的影响以及为AD患者提取有价值的临床数据。

方法

本研究试图通过开发一种名为张量对比主成分分析(T-cPCA)的新型机器学习模型来应对这些挑战。本研究的目的是在最小化自然衰老影响的同时预测AD进展并识别临床亚型。

结果

我们利用了一个包含872个特征的临床变量空间,几乎涵盖了所有AD临床检查,这是当前研究中对AD特征最全面的描述。通过有效最小化自然衰老的混杂效应,T-cPCA在预测AD进展方面取得了最高准确率。

讨论

发现了四种主要AD临床亚型的代表性特征和致病回路。经唐都医院临床医生确认,四种临床亚型中典型患者的斑块(18F-AV45)分布与在四种AD亚型中发现的代表性脑区一致,这进一步为AD发病机制的潜在机制提供了新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1787/11351280/dec38c5f770b/fnins-18-1388391-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验