Suppr超能文献

使用有向无环图(DAG)来确定个体随机身体活动促进干预的总因果效应是否可识别。

Using Directed Acyclic Graphs (DAGs) to Determine if the Total Causal Effect of an Individual Randomized Physical Activity-Promoting Intervention is Identifiable.

作者信息

Myers Nicholas D, Brincks Ahnalee M, Lee Seungmin

机构信息

Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA.

Human Development and Family Studies, Michigan State University, East Lansing, Michigan, USA.

出版信息

Meas Phys Educ Exerc Sci. 2024;28(3):267-282. doi: 10.1080/1091367x.2024.2318355. Epub 2024 Feb 19.

Abstract

Physical activity promotion is a best buy for public health because it has the potential to help individuals feel better, sleep better, and perform daily tasks more easily, in addition to providing disease prevention benefits. There is strong evidence that individual-level theory-based behavioral interventions are effective for increasing physical activity levels in adult populations but causal inference from these interventions often is unclearly articulated. A directed acyclic graph (DAG) can be, but rarely is, used to determine if the causal effect of an individual-level theory-based physical activity-promoting intervention is identifiable (e.g. stripped of any spurious association). The primary objective of the current study was to demonstrate how a DAG can be used to determine if the total causal effect of an individual randomized physical activity-promoting intervention is identifiable. The demonstration was based on the Well-Being and Physical Activity study (ClinicalTrials.gov, identifier: NCT03194854). Annotated files from DAGitty and Mplus are provided.

摘要

促进身体活动对公众健康来说是一项物超所值的举措,因为它除了具有预防疾病的益处外,还能让人们感觉更好、睡眠更佳,并更轻松地完成日常任务。有充分证据表明,基于个体层面理论的行为干预措施对于提高成年人群的身体活动水平是有效的,但这些干预措施的因果推断往往表述不清。有向无环图(DAG)可以用来确定基于个体层面理论的身体活动促进干预措施的因果效应是否可识别(例如,去除任何虚假关联),但很少有人这样做。本研究的主要目的是展示如何使用有向无环图来确定个体随机身体活动促进干预措施的总因果效应是否可识别。该演示基于幸福感与身体活动研究(ClinicalTrials.gov,标识符:NCT03194854)。提供了来自DAGitty和Mplus的注释文件。

相似文献

6
Directed acyclic graphs for clinical research: a tutorial.临床研究中的有向无环图:教程
J Minim Invasive Surg. 2023 Sep 15;26(3):97-107. doi: 10.7602/jmis.2023.26.3.97.
8
Structural intervention distance for evaluating causal graphs.用于评估因果图的结构干预距离
Neural Comput. 2015 Mar;27(3):771-99. doi: 10.1162/NECO_a_00708. Epub 2015 Jan 20.

本文引用的文献

2
Estimands, Estimators, and Estimates.估计目标、估计量与估计值。
JAMA. 2021 Sep 14;326(10):967-968. doi: 10.1001/jama.2021.2886.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验