Suppr超能文献

用于评估因果图的结构干预距离

Structural intervention distance for evaluating causal graphs.

作者信息

Peters Jonas, Bühlmann Peter

机构信息

Seminar for Statistics, Department of Mathematics, ETH Zürich 8092, Switzerland

出版信息

Neural Comput. 2015 Mar;27(3):771-99. doi: 10.1162/NECO_a_00708. Epub 2015 Jan 20.

Abstract

Causal inference relies on the structure of a graph, often a directed acyclic graph (DAG). Different graphs may result in different causal inference statements and different intervention distributions. To quantify such differences, we propose a (pre-)metric between DAGs, the structural intervention distance (SID). The SID is based on a graphical criterion only and quantifies the closeness between two DAGs in terms of their corresponding causal inference statements. It is therefore well suited for evaluating graphs that are used for computing interventions. Instead of DAGs, it is also possible to compare CPDAGs, completed partially DAGs that represent Markov equivalence classes. The SID differs significantly from the widely used structural Hamming distance and therefore constitutes a valuable additional measure. We discuss properties of this distance and provide a (reasonably) efficient implementation with software code available on the first author's home page.

摘要

因果推断依赖于图的结构,通常是有向无环图(DAG)。不同的图可能会导致不同的因果推断陈述和不同的干预分布。为了量化这些差异,我们提出了一种DAG之间的(预)度量——结构干预距离(SID)。SID仅基于图形标准,并根据两个DAG相应的因果推断陈述来量化它们之间的接近程度。因此,它非常适合评估用于计算干预的图。除了DAG之外,也可以比较CPDAG,即表示马尔可夫等价类的部分完成的DAG。SID与广泛使用的结构汉明距离有显著差异,因此构成了一种有价值的附加度量。我们讨论了这种距离的性质,并在第一作者的主页上提供了带有软件代码的(合理)高效实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验