Shapturenka Pavel, Barnes Benjamin K, Mansfield Elisabeth, Noor Matthew M, Fagan Jeffrey A
Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
Applied Chemicals and Materials Division, National Institute of Standards and Technology Boulder CO 80305 USA.
RSC Adv. 2024 Aug 28;14(35):25490-25506. doi: 10.1039/d4ra01883d. eCollection 2024 Aug 12.
Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate populations of either nanotube type at significant mass scale for four distinct nanotube sources of increasing average diameter (0.7 nm to >2 nm). Such separations result in a supernant phase containing shorter nanotubes and a pellet phase containing the longer nanotubes, with the threshold length for depletion decreasing with increasing polymer concentration. Cross-comparison through analytical ultracentrifugation, spectroscopy, and microscopy applied polymer concentration show tailorable and precise length fractionation for 100 nm through >1 μm rod lengths, with fractionation also designable to remove non-nanotube impurities. The threshold length of depletion is further found to increase for decreasing nanotube diameter at fixed polymer concentration, a finding consistent with scaling attributable to nanotube radial excluded volume. The capabilities demonstrated herein promise to significantly advance nanotube implementation within the scientific community.
根据形状和尺寸对纳米颗粒进行分类,对于推进纳米材料标准化、基础胶体研究以及生物传感和数字电子等技术至关重要。单壁碳纳米管(SWCNT)的长度分离方法在历史上一直存在精度和质量通量之间的权衡,而氮化硼纳米管(BNNT)是一种迅速兴起的类似材料。我们扩展并详细介绍了一种基于聚合物沉淀的方法,用于在较大质量规模上对两种纳米管类型的群体进行分级分离,该方法适用于四种平均直径不断增加(从0.7纳米到大于2纳米)的不同纳米管来源。这种分离产生一个含有较短纳米管的上清相和一个含有较长纳米管的沉淀相,随着聚合物浓度的增加,耗尽的阈值长度会减小。通过分析超速离心、光谱学和显微镜进行的交叉比较表明,对于100纳米至大于1微米的棒状长度,可以进行可定制且精确的长度分级分离,并且分级分离还可设计用于去除非纳米管杂质。在固定聚合物浓度下,还发现随着纳米管直径的减小,耗尽的阈值长度会增加,这一发现与纳米管径向排除体积导致的标度关系一致。本文展示的这些能力有望显著推动纳米管在科学界的应用。