Shapturenka Pavel, Adel Tehseen, Abel Frank M, Hight Walker Angela R, Fagan Jeffrey A
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
ACS Nanosci Au. 2025 Jun 17;5(4):293-305. doi: 10.1021/acsnanoscienceau.5c00022. eCollection 2025 Aug 20.
Boron nitride nanotubes (BNNTs) are a promising nanomaterial due to their remarkable optical and mechanical properties, chemical robustness, and extended aspect ratios. Herein, we report the formation of strongly biaxially aligned thin films of BNNTs using automated slow vacuum filtration (SVF), as well as their cocomposites with single-wall carbon nanotubes (SWCNTs). Pure BNNT SVF-generated films are found to differ in optimization conditions from those identified previously for SWCNTs but display similar improvements in alignment and uniformity with advanced purification for nanotube length and homogeneity, with globally aligned films observed. Mixed, cocomposite, biaxially aligned films of BNNTs with SWCNTs are also described. Such films provide effective and efficient hosting capabilities for unique morphologies of distributed and individualized SWCNTs aligned by a wide-bandgap BNNT matrix. Concentrations upward of 25% SWCNT mass fraction were found to reside within majority-BNNT films without significantly disrupting the global composite structure; the SWCNT fraction, in turn, enabled probing of both local and global nematic alignment through their use as spectroscopic reporters. Leveraging the thickness and alignment control provided by our SVF implementation, both neat BNNT and composite films show great promise for advancing novel photonic and other thin-film nanocomposite applications requiring tailorable mechanical, thermal, optical, and electronic functionalities.
氮化硼纳米管(BNNTs)因其卓越的光学和机械性能、化学稳定性以及较大的长径比,成为一种很有前景的纳米材料。在此,我们报道了使用自动慢速真空过滤(SVF)法制备高度双轴取向的BNNTs薄膜,以及它们与单壁碳纳米管(SWCNTs)的共复合材料。研究发现,通过SVF法制备的纯BNNT薄膜的优化条件与先前确定的SWCNTs的条件不同,但随着对纳米管长度和均匀性的进一步纯化,其在取向和均匀性方面有类似的改善,观察到了全局取向的薄膜。还描述了BNNTs与SWCNTs的混合、共复合、双轴取向薄膜。这种薄膜为宽带隙BNNT基质排列的分布式和个体化SWCNTs的独特形态提供了有效且高效的容纳能力。发现SWCNT质量分数超过25%时,其仍存在于多数为BNNT的薄膜中,且不会显著破坏整体复合结构;反过来,SWCNT组分通过用作光谱报告分子,能够探测局部和全局向列取向。利用我们的SVF方法所提供的厚度和取向控制,纯BNNT薄膜和复合薄膜在推进需要可定制机械、热、光学和电子功能的新型光子及其他薄膜纳米复合材料应用方面都显示出巨大潜力。