Patel Ashay, Tudosiu Petru-Daniel, Pinaya Walter Hugo Lopez, Adeleke Olusola, Cook Gary, Goh Vicky, Ourselin Sebastien, Cardoso M Jorge
King's College London, London, WC2R 2LS, United Kingdom.
Med Image Comput Comput Assist Interv. 2023 Jan 10;2023:300-309. doi: 10.1007/978-3-031-43907-0_29.
Cancer is a highly heterogeneous condition best visualised in positron emission tomography. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models. While prior work in this field has showcased the efficacy of abnormality detection methods (e.g. Transformer-based), these have shown significant vulnerabilities to differences in data geometry. Changes in image resolution or observed field of view can result in inaccurate predictions, even with significant data pre-processing and augmentation. We propose a new spatial conditioning mechanism that enables models to adapt and learn from varying data geometries, and apply it to a state-of-the-art Vector-Quantized Variational Autoencoder + Transformer abnormality detection model. We showcase that this spatial conditioning mechanism statistically-significantly improves model performance on whole-body data compared to the same model without conditioning, while allowing the model to perform inference at varying data geometries.
癌症是一种高度异质性的病症,在正电子发射断层扫描中最易显现。由于这种异质性,可以使用无监督学习异常检测模型构建通用的癌症检测模型。虽然该领域的先前工作已经展示了异常检测方法(例如基于Transformer的方法)的有效性,但这些方法在数据几何差异方面表现出显著的脆弱性。即使进行了大量的数据预处理和增强,图像分辨率或观察视野的变化也可能导致预测不准确。我们提出了一种新的空间条件机制,使模型能够适应并从不同的数据几何中学习,并将其应用于先进的矢量量化变分自编码器+Transformer异常检测模型。我们展示了,与没有条件机制的相同模型相比,这种空间条件机制在全身数据上显著提高了模型性能,同时允许模型在不同的数据几何条件下进行推理。