Suppr超能文献

几何不变性异常检测。

Geometry-invariant abnormality detection.

作者信息

Patel Ashay, Tudosiu Petru-Daniel, Pinaya Walter Hugo Lopez, Adeleke Olusola, Cook Gary, Goh Vicky, Ourselin Sebastien, Cardoso M Jorge

机构信息

King's College London, London, WC2R 2LS, United Kingdom.

出版信息

Med Image Comput Comput Assist Interv. 2023 Jan 10;2023:300-309. doi: 10.1007/978-3-031-43907-0_29.

Abstract

Cancer is a highly heterogeneous condition best visualised in positron emission tomography. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models. While prior work in this field has showcased the efficacy of abnormality detection methods (e.g. Transformer-based), these have shown significant vulnerabilities to differences in data geometry. Changes in image resolution or observed field of view can result in inaccurate predictions, even with significant data pre-processing and augmentation. We propose a new spatial conditioning mechanism that enables models to adapt and learn from varying data geometries, and apply it to a state-of-the-art Vector-Quantized Variational Autoencoder + Transformer abnormality detection model. We showcase that this spatial conditioning mechanism statistically-significantly improves model performance on whole-body data compared to the same model without conditioning, while allowing the model to perform inference at varying data geometries.

摘要

癌症是一种高度异质性的病症,在正电子发射断层扫描中最易显现。由于这种异质性,可以使用无监督学习异常检测模型构建通用的癌症检测模型。虽然该领域的先前工作已经展示了异常检测方法(例如基于Transformer的方法)的有效性,但这些方法在数据几何差异方面表现出显著的脆弱性。即使进行了大量的数据预处理和增强,图像分辨率或观察视野的变化也可能导致预测不准确。我们提出了一种新的空间条件机制,使模型能够适应并从不同的数据几何中学习,并将其应用于先进的矢量量化变分自编码器+Transformer异常检测模型。我们展示了,与没有条件机制的相同模型相比,这种空间条件机制在全身数据上显著提高了模型性能,同时允许模型在不同的数据几何条件下进行推理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5006/7616404/2ee774e77778/EMS198178-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验