Suppr超能文献

用于多模态无监督全身PET异常检测的交叉注意力变换器

Cross Attention Transformers for Multi-modal Unsupervised Whole-Body PET Anomaly Detection.

作者信息

Patel Ashay, Tudosiu Petru-Daniel, Pinaya Walter Hugo Lopez, Cook Gary, Goh Vicky, Ourselin Sebastien, Cardoso M Jorge

机构信息

King's College London, London, WC2R 2LS, United Kingdom.

出版信息

Deep Gener Model (2022). 2022;13609:14-23. doi: 10.1007/978-3-031-18576-2_2. Epub 2022 Oct 8.

Abstract

Cancers can have highly heterogeneous uptake patterns best visualised in positron emission tomography. These patterns are essential to detect, diagnose, stage and predict the evolution of cancer. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models; these models learn a healthy representation of tissue and detect cancer by predicting deviations from healthy appearances. This task alone requires models capable of accurately learning long-range interactions between organs, imaging patterns, and other abstract features with high levels of expressivity. Such characteristics are suitably satisfied by transformers, and have been shown to generate state-of-the-art results in unsupervised anomaly detection by training on healthy data. This work expands upon such approaches by introducing multi-modal conditioning of the transformer via cross-attention, i.e. supplying anatomical reference information from paired CT images to aid the PET anomaly detection task. Using 83 whole-body PET/CT samples containing various cancer types, we show that our anomaly detection method is robust and capable of achieving accurate cancer localisation results even in cases where healthy training data is unavailable. Furthermore, the proposed model uncertainty, in conjunction with a kernel density estimation approach, is shown to provide a statistically robust alternative to residual-based anomaly maps. Overall, a superior performance is demonstrated against leading alternatives, drawing attention to the potential of these approaches.

摘要

癌症在正电子发射断层扫描中可呈现高度异质性的摄取模式,这些模式对于癌症的检测、诊断、分期和演变预测至关重要。由于这种异质性,可以使用无监督学习异常检测模型构建通用的癌症检测模型;这些模型学习组织的健康表征,并通过预测与健康外观的偏差来检测癌症。仅这项任务就需要能够准确学习器官、成像模式和其他具有高表达水平的抽象特征之间长程相互作用的模型。变压器模型恰好满足这些特性,并且已证明通过在健康数据上进行训练,在无监督异常检测中能产生最先进的结果。这项工作通过引入基于交叉注意力的变压器多模态条件,即从配对的CT图像中提供解剖参考信息以辅助PET异常检测任务,对上述方法进行了扩展。使用包含各种癌症类型的83个全身PET/CT样本,我们表明我们的异常检测方法具有鲁棒性,即使在没有健康训练数据的情况下,也能够实现准确的癌症定位结果。此外,所提出的模型不确定性与核密度估计方法相结合,被证明可以为基于残差的异常图提供一种统计上稳健的替代方法。总体而言,与领先的替代方法相比,展示了卓越的性能,凸显了这些方法的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf8c/7616582/486a544363b4/EMS198179-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验