Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1 V 1 V7, Canada.
Biochemistry. 2024 Sep 17;63(18):2352-2368. doi: 10.1021/acs.biochem.4c00279. Epub 2024 Aug 29.
, a Gram-negative obligate anaerobe, is common to the oral microbiota, but the species is known to infect other sites of the body where it is associated with a range of pathologies. At present, little is known about the mechanisms by which mitigates against oxidative and nitrosative stress. Inspection of the subsp. ATCC 10953 genome reveals that it encodes a flavodiiron protein (FDP; FNP2073) that is known in other organisms to reduce NO to NO and/or O to HO. FNP2073 is dicistronic with a gene encoding a multicomponent enzyme termed BCR for utyryl-oA eductase. BCR is composed of a butyryl-CoA dehydrogenase domain (BCD), the C-terminal domain of the α-subunit of the electron-transfer flavoprotein (Etfα), and a rubredoxin domain. We show that BCR and the FDP form an αβ heterotetramic complex and use butyryl-CoA to selectively reduce O to HO. The FAD associated with the Etfα domain (α-FAD) forms red anionic semiquinone (FAD), whereas the FAD present in the BCD domain (δ-FAD) forms the blue-neutral semiquinone (FADH), indicating that both cofactors participate in one-electron transfers. This was confirmed in stopped-flow studies where the reduction of oxidized BCR with an excess of butyryl-CoA resulted in rapid (<1.6 ms) interflavin electron transfer evidenced by the formation of the FAD. Analysis of bacterial genomes revealed that the dicistron is present in obligate anaerobic gut bacteria considered to be beneficial by virtue of their ability to produce butyrate. Thus, BCR-FDP may help to maintain anaerobiosis in the colon.
栖瘤胃球菌是一种革兰氏阴性严格厌氧菌,普遍存在于口腔微生物群中,但该物种已知会感染身体的其他部位,与多种病理相关。目前,人们对 减轻氧化和硝化应激的机制知之甚少。检查 亚种 ATCC 10953 的基因组表明,它编码一种黄素二铁蛋白 (FDP;FNP2073),在其他生物体中已知该蛋白可将 NO 还原为 NO 和/或 O 为 HO。FNP2073 与编码称为丁酰基-oA 前体酶 (BCR) 的多组分酶的基因二顺反子。BCR 由丁酰基辅酶 A 脱氢酶结构域 (BCD)、电子转移黄素蛋白 (Etfα)α-亚基的 C 端结构域和 rubredoxin 结构域组成。我们表明 BCR 和 FDP 形成一个 αβ 异源四聚体复合物,并使用丁酰基辅酶 A 选择性地将 O 还原为 HO。与 Etfα 结构域相关的 FAD(α-FAD)形成红色阴离子半醌(FAD),而 BCD 结构域中存在的 FAD(δ-FAD)形成蓝色中性半醌(FADH),表明两个辅因子都参与单电子转移。这在停流研究中得到了证实,用过量的丁酰基辅酶 A 还原氧化的 BCR 导致黄素之间的快速(<1.6 ms)电子转移,这是由 FAD 的形成证明的。对细菌基因组的分析表明,这种二顺反子存在于被认为是有益的严格厌氧菌中,因为它们能够产生丁酸盐。因此,BCR-FDP 可能有助于维持结肠的厌氧状态。