Suppr超能文献

快速动力学揭示了发酵氨棒杆菌分支电子传递黄素蛋白中令人惊讶的黄素化学。

Rapid kinetics reveal surprising flavin chemistry in bifurcating electron transfer flavoprotein from Acidaminococcus fermentans.

机构信息

Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok, Thailand; Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand.

Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany; Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100124. doi: 10.1074/jbc.RA120.016017. Epub 2020 Dec 2.

Abstract

Electron bifurcation uses free energy from exergonic redox reactions to power endergonic reactions. β-FAD of the electron transfer flavoprotein (EtfAB) from the anaerobic bacterium Acidaminococcus fermentans bifurcates the electrons of NADH, sending one to the low-potential ferredoxin and the other to the high-potential α-FAD semiquinone (α-FAD). The resultant α-FAD hydroquinone (α-FADH) transfers one electron further to butyryl-CoA dehydrogenase (Bcd); two such transfers enable Bcd to reduce crotonyl-CoA to butyryl-CoA. To get insight into the mechanism of these intricate reactions, we constructed an artificial reaction only with EtfAB containing α-FAD or α-FAD to monitor formation of α-FAD or α-FADH, respectively, using stopped flow kinetic measurements. In the presence of α-FAD, we observed that NADH transferred a hydride to β-FAD at a rate of 920 s, yielding the charge-transfer complex NAD:β-FADH with an absorbance maximum at 650 nm. β-FADH bifurcated one electron to α-FAD and the other electron to α-FAD of a second EtfAB molecule, forming two stable α-FAD. With α-FAD, the reduction of β-FAD with NADH was 1500 times slower. Reduction of β-FAD in the presence of α-FAD displayed a normal kinetic isotope effect (KIE) of 2.1, whereas the KIE was inverted in the presence of α-FAD. These data indicate that a nearby radical (14 Å apart) slows the rate of a hydride transfer and inverts the KIE. This unanticipated flavin chemistry is not restricted to Etf-Bcd but certainly occurs in other bifurcating Etfs found in anaerobic bacteria and archaea.

摘要

电子分支利用放能氧化还原反应中的自由能来驱动吸能反应。来自厌氧细菌产氨棒杆菌的电子传递黄素蛋白(EtfAB)中的β-FAD 使 NADH 的电子发生分支,一部分传递给低电势铁氧还蛋白,另一部分传递给高电势α-FAD 半醌(α-FAD)。生成的α-FAD 氢醌(α-FADH)进一步将一个电子传递给丁酰基辅酶 A 脱氢酶(Bcd);两个这样的电子传递使 Bcd 将丁烯酰辅酶 A 还原为丁酰辅酶 A。为了深入了解这些复杂反应的机制,我们构建了一个仅包含 EtfAB 的人工反应,该反应分别含有α-FAD 或α-FAD,以使用停流动力学测量来监测α-FAD 或α-FADH 的形成。在存在α-FAD 的情况下,我们观察到 NADH 以 920 s 的速率将一个氢化物转移到β-FAD 上,生成具有 650nm 最大吸收的电荷转移复合物 NAD:β-FADH。β-FADH 将一个电子分支到α-FAD,另一个电子分支到第二个 EtfAB 分子的α-FAD,形成两个稳定的α-FAD。有α-FAD 时,β-FAD 与 NADH 的还原速度慢 1500 倍。在存在α-FAD 的情况下,β-FAD 的还原显示出正常的动力学同位素效应(KIE)为 2.1,而在存在α-FAD 的情况下,KIE 则被反转。这些数据表明,附近的自由基(相距 14Å)会降低氢化物转移的速率并反转 KIE。这种出乎意料的黄素化学不仅限于 Etf-Bcd,而且肯定会发生在厌氧细菌和古细菌中发现的其他分支 Etfs 中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d95d/7948398/eaf5700fe565/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验