From the Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032 Marburg, Germany.
J Biol Chem. 2014 Feb 21;289(8):5145-57. doi: 10.1074/jbc.M113.521013. Epub 2013 Dec 30.
Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.
电子分支是一种最初在许多生物体的 Q 循环中发现的能量耦联的基本策略。最近,在厌氧菌中检测到了一种基于黄素的电子分支,最初在梭菌中,后来在产乙酸菌和产甲烷菌中也检测到了这种分支。它使厌氧细菌和古菌能够还原低电位[4Fe-4S]簇的铁氧还蛋白,从而提高底物水平和电子传递磷酸化的效率。在这里,我们描述了酸发酵醋菌的分叉电子传递黄素蛋白(EtfAf)和丁酰辅酶 A 脱氢酶(BcdAf)的特性,它们将丁烯酰辅酶 A的放能还原与铁氧还蛋白的吸能还原偶联起来,同时使用 NADH。EtfAf 在亚基α中含有一个 FAD(α-FAD),在亚基β中含有第二个 FAD(β-FAD)。两个异咯嗪环之间的距离为 18 Å。EtfAf-NAD(+)复合物结构显示β-FAD 是 NADH 氢化物的受体。形成的β-FADH(-)被认为是分叉电子供体。由于结构域运动,α-FAD 能够接近β-FADH(-)约 4 Å,并接受一个电子,生成一个稳定的阴离子半醌,α-FAD,它在第二次结构域运动后将这个电子进一步传递给 BcdAf 的 Dh-FAD。剩下的非稳定中性半醌,β-FADH(•),立即还原铁氧还蛋白。重复这个过程提供了第二个还原的铁氧还蛋白和 Dh-FADH(-),它们将丁烯酰辅酶 A 转化为丁酰辅酶 A。