Das Debarati, El Housseini Wassim, Brachi Monica, Minteer Shelley D, Miller Anne-Frances
Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States.
Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
JACS Au. 2025 Apr 7;5(4):1689-1706. doi: 10.1021/jacsau.4c01219. eCollection 2025 Apr 28.
Bifurcating enzymes employ energy from a favorable electron transfer to drive unfavorable transfer of a second electron, thereby generating a more reactive product. They are therefore highly desirable in catalytic systems, for example, to drive challenging reactions such as nitrogen fixation. While most bifurcating enzymes contain air-sensitive metal centers, bifurcating electron transfer flavoproteins (bETFs) employ flavins. However, they have not been successfully deployed on electrodes. Herein, we demonstrate immobilization and expected thermodynamic reactivity of a bETF from a hyperthermophilic archaeon, (ETF). ETF differs from previously biochemically characterized bETFs in being a single protein, representing a concatenation of the two subunits of known ETFs. However, ETF retains the chemical properties of heterodimeric bETFs, including possession of two FADs: one that undergoes sequential 1-electron (1e) reductions at high E° and forms an anionic semiquinone, and another that is amenable to lower-E° 2e reduction, including by NADH. We found homologous monomeric ETF genes in archaeal and bacterial genomes, accompanied by genes that also commonly flank heterodimeric ETFs, and ETF's sequence conservation is 50% higher with bETFs than with canonical ETFs. Thus, ETF is best described as a bETF. Our direct electrochemical trials capture reversible redox couples for all three thermodynamically expected redox events. We document electrochemical activity over a range of pH values and reveal a conformational change coupled to proton acquisition that affects the electrochemical activity of the higher-E° FAD. Thus, this well-behaved monomeric bETF opens the door to bioinspired bifurcating devices or bifurcation on a chip.
分叉酶利用有利电子转移的能量来驱动第二个电子的不利转移,从而生成更具反应性的产物。因此,它们在催化系统中非常受欢迎,例如用于驱动诸如固氮等具有挑战性的反应。虽然大多数分叉酶含有对空气敏感的金属中心,但分叉电子转移黄素蛋白(bETF)使用黄素。然而,它们尚未成功应用于电极上。在此,我们展示了来自嗜热古菌的一种bETF(ETF)的固定化及其预期的热力学反应性。ETF与先前通过生物化学表征的bETF不同,它是一种单一蛋白质,代表已知ETF的两个亚基的串联。然而,ETF保留了异二聚体bETF的化学性质,包括拥有两个FAD:一个在高E°下进行连续的单电子(1e)还原并形成阴离子半醌,另一个适合较低E°的双电子(2e)还原,包括被NADH还原。我们在古菌和细菌基因组中发现了同源的单体ETF基因,同时还有通常位于异二聚体ETF侧翼的基因,并且ETF与bETF的序列保守性比与典型ETF的高50%。因此,ETF最好被描述为一种bETF。我们的直接电化学试验捕捉到了所有三个热力学预期的氧化还原事件的可逆氧化还原对。我们记录了在一系列pH值范围内的电化学活性,并揭示了与质子获取相关的构象变化,该变化影响了较高E° FAD的电化学活性。因此,这种性能良好的单体bETF为受生物启发的分叉装置或芯片上的分叉打开了大门。