Suppr超能文献

心理机械学——理解人工智能的多学科框架。

Psychomatics-A Multidisciplinary Framework for Understanding Artificial Minds.

作者信息

Riva Giuseppe, Mantovani Fabrizia, Wiederhold Brenda K, Marchetti Antonella, Gaggioli Andrea

机构信息

Humane Technology Lab, Catholic University of Sacred Heart, Milan, Italy.

Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano IRCCS, Milan, Italy.

出版信息

Cyberpsychol Behav Soc Netw. 2024 Aug 29. doi: 10.1089/cyber.2024.0409.

Abstract

Although large language models (LLMs) and other artificial intelligence systems demonstrate cognitive skills similar to humans, such as concept learning and language acquisition, the way they process information fundamentally differs from biological cognition. To better understand these differences, this article introduces Psychomatics, a multidisciplinary framework bridging cognitive science, linguistics, and computer science. It aims to delve deeper into the high-level functioning of LLMs, focusing specifically on how LLMs acquire, learn, remember, and use information to produce their outputs. To achieve this goal, Psychomatics will rely on a comparative methodology, starting from a theory-driven research question-is the process of language development and use different in humans and LLMs?-drawing parallels between LLMs and biological systems. Our analysis shows how LLMs can map and manipulate complex linguistic patterns in their training data. Moreover, LLMs can follow Grice's Cooperative principle to provide relevant and informative responses. However, human cognition draws from multiple sources of meaning, including experiential, emotional, and imaginative facets, which transcend mere language processing and are rooted in our social and developmental trajectories. Moreover, current LLMs lack physical embodiment, reducing their ability to make sense of the intricate interplay between perception, action, and cognition that shapes human understanding and expression. Ultimately, Psychomatics holds the potential to yield transformative insights into the nature of language, cognition, and intelligence, both artificial and biological. Moreover, by drawing parallels between LLMs and human cognitive processes, Psychomatics can inform the development of more robust and human-like artificial intelligence systems.

摘要

尽管大语言模型(LLMs)和其他人工智能系统展现出与人类相似的认知技能,如概念学习和语言习得,但它们处理信息的方式与生物认知有着根本区别。为了更好地理解这些差异,本文引入了心理信息学,这是一个横跨认知科学、语言学和计算机科学的多学科框架。其目的是更深入地探究大语言模型的高级功能,特别关注大语言模型如何获取、学习、记忆和使用信息以生成输出。为实现这一目标,心理信息学将采用比较方法,从一个理论驱动的研究问题出发——人类和大语言模型在语言发展和使用过程中是否不同?——在大语言模型和生物系统之间进行类比。我们的分析展示了大语言模型如何在其训练数据中映射和操纵复杂的语言模式。此外,大语言模型能够遵循格赖斯合作原则提供相关且信息丰富的回答。然而,人类认知源自多种意义来源,包括经验、情感和想象等方面,这些超越了单纯的语言处理,且植根于我们的社会和发展轨迹。此外,当前的大语言模型缺乏物理实体,这降低了它们理解塑造人类理解和表达的感知、行动和认知之间复杂相互作用的能力。最终,心理信息学有潜力对语言、认知以及人工智能和生物智能的本质产生变革性见解。此外,通过在大语言模型和人类认知过程之间进行类比,心理信息学可以为更强大、更类人的人工智能系统的开发提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验