Suppr超能文献

SAD:高时间分辨率 fMRI 数据中 BOLD 激活的半监督自动检测。

SAD: semi-supervised automatic detection of BOLD activations in high temporal resolution fMRI data.

机构信息

Laboratory for Social and Neural Systems Research, SNS-Lab, University of Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.

Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.

出版信息

MAGMA. 2024 Dec;37(6):1031-1046. doi: 10.1007/s10334-024-01197-0. Epub 2024 Aug 29.

Abstract

OBJECTIVE

Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To overcome the necessity of presuming a specific model for the hemodynamic response, we introduce a semi-supervised automatic detection (SAD) method.

MATERIALS AND METHODS

The proposed SAD method employs a Bi-LSTM neural network to classify high temporal resolution fMRI data. Network training utilized an fMRI dataset with 75-ms temporal resolution in an iterative scheme. Classification performance was evaluated on a second fMRI dataset from the same participant, collected on a different day. Comparative analysis with the standard GLM approach was conducted to evaluate the cooperative effectiveness of the SAD method.

RESULTS

The SAD method performed well based on the classification scores: true-positive rate = 0.961, area under the receiver operating curve = 0.998, true-negative rate = 0.99, F1-score = 0.979, False-negative rate = 0.038, false-discovery rate = 0.002, false-positive rate = 0.002 at 75-ms temporal resolution.

CONCLUSION

SAD can detect hemodynamic responses at 75-ms temporal resolution without relying on a specific shape of an HRF. Future work could expand the use cases to include more participants and different fMRI paradigms.

摘要

目的

尽管在 fMRI 数据分析中普遍使用了广义线性模型(GLM),但是假设所有体素都有一个预先定义的血液动力学响应函数(HRF)可能会降低可靠性,并且可能会扭曲从中得出的推论。为了克服对血液动力学响应假设特定模型的必要性,我们引入了一种半监督自动检测(SAD)方法。

材料和方法

所提出的 SAD 方法使用 Bi-LSTM 神经网络对高时间分辨率 fMRI 数据进行分类。网络训练利用了具有 75-ms 时间分辨率的 fMRI 数据集,采用迭代方案进行。分类性能在来自同一参与者的第二个 fMRI 数据集上进行评估,该数据集是在不同的日子采集的。与标准 GLM 方法进行了比较分析,以评估 SAD 方法的协同有效性。

结果

SAD 方法基于分类得分表现良好:真阳性率=0.961,接收者操作曲线下面积=0.998,真阴性率=0.99,F1 分数=0.979,假阴性率=0.038,假发现率=0.002,假阳性率=0.002,时间分辨率为 75-ms。

结论

SAD 可以在不依赖于特定 HRF 形状的情况下检测到 75-ms 时间分辨率的血液动力学响应。未来的工作可以扩展用例,包括更多的参与者和不同的 fMRI 范式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验