Marcoux Arnaud, Burgos Ninon, Bertrand Anne, Teichmann Marc, Routier Alexandre, Wen Junhao, Samper-González Jorge, Bottani Simona, Durrleman Stanley, Habert Marie-Odile, Colliot Olivier
Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
Inserm, U 1127, Paris, France.
Front Neuroinform. 2018 Dec 10;12:94. doi: 10.3389/fninf.2018.00094. eCollection 2018.
We present a fully automatic pipeline for the analysis of PET data on the cortical surface. Our pipeline combines tools from FreeSurfer and PETPVC, and consists of (i) co-registration of PET and T1-w MRI (T1) images, (ii) intensity normalization, (iii) partial volume correction, (iv) robust projection of the PET signal onto the subject's cortical surface, (v) spatial normalization to a template, and (vi) atlas statistics. We evaluated the performance of the proposed workflow by performing group comparisons and showed that the approach was able to identify the areas of hypometabolism characteristic of different dementia syndromes: Alzheimer's disease (AD) and both the semantic and logopenic variants of primary progressive aphasia. We also showed that these results were comparable to those obtained with a standard volume-based approach. We then performed individual classifications and showed that vertices can be used as features to differentiate cognitively normal and AD subjects. This pipeline is integrated into Clinica, an open-source software platform for neuroscience studies available at www.clinica.run.
我们提出了一种用于分析皮质表面PET数据的全自动流程。我们的流程结合了来自FreeSurfer和PETPVC的工具,包括:(i)PET与T1加权磁共振成像(T1)图像的配准,(ii)强度归一化,(iii)部分容积校正,(iv)将PET信号稳健投影到受试者的皮质表面,(v)空间归一化到模板,以及(vi)图谱统计。我们通过进行组间比较评估了所提出工作流程的性能,结果表明该方法能够识别不同痴呆综合征(阿尔茨海默病(AD)以及原发性进行性失语的语义变异型和非流利型变异型)的低代谢特征区域。我们还表明这些结果与采用基于标准体积的方法所获得的结果相当。然后我们进行了个体分类,并表明顶点可作为区分认知正常和AD受试者的特征。此流程已集成到Clinica中,Clinica是一个用于神经科学研究的开源软件平台,可从www.clinica.run获取。