Suppr超能文献

一种新的分子描述符选择方法:用于硝基芳香族化合物致突变性的 QSAR 模型。

A novel procedure for selection of molecular descriptors: QSAR model for mutagenicity of nitroaromatic compounds.

机构信息

Department for Nuclear and Plasma Physics, Vinča Institute of Nuclear Sciences -National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Faculty of Physics, University of Belgrade, Belgrade, Serbia.

出版信息

Environ Sci Pollut Res Int. 2024 Sep;31(42):54603-54617. doi: 10.1007/s11356-024-34800-x. Epub 2024 Aug 29.

Abstract

Nitroaromatic compounds (NACs) stand out as pervasive organic pollutants, prompting an imperative need to investigate their hazardous effects. Computational chemistry methods play a crucial role in this exploration, offering a safer and more time-efficient approach, mandated by various legislations. In this study, our focus lay on the development of transparent, interpretable, reproducible, and publicly available methodologies aimed at deriving quantitative structure-activity relationship models and testing them by modelling the mutagenicity of NACs against the Salmonella typhimurium TA100 strain. Descriptors were selected from Mordred and RDKit molecular descriptors, along with several quantum chemistry descriptors. For that purpose, the genetic algorithm (GA), as the most widely used method in the literature, and three alternative algorithms (Boruta, Featurewiz, and ForwardSelector) combined with the forward stepwise selection technique were used. The construction of models utilized the multiple linear regression method, with subsequent scrutiny of fitting and predictive performance, reliability, and robustness through various statistical validation criteria. The models were ranked by the Multi-Criteria Decision Making procedure. Findings have revealed that the proposed methodology for descriptor selection outperforms GA, with Featurewiz showing a slight advantage over Boruta and ForwardSelector. These constructed models can serve as valuable tools for the quick and reliable prediction of NACs mutagenicity.

摘要

硝基芳香族化合物(NACs)作为普遍存在的有机污染物引人注目,这促使我们必须研究它们的危害性。计算化学方法在这一探索中起着至关重要的作用,它提供了一种更安全、更高效的方法,这是各种法规所要求的。在这项研究中,我们的重点是开发透明、可解释、可重现和公开可用的方法,旨在得出定量构效关系模型,并通过对 NACs 对鼠伤寒沙门氏菌 TA100 菌株的致突变性进行建模来测试这些模型。描述符选自 Mordred 和 RDKit 分子描述符,以及一些量子化学描述符。为此,我们使用了遗传算法(GA),这是文献中最广泛使用的方法,以及三种替代算法(Boruta、Featurewiz 和 ForwardSelector),结合逐步向前选择技术。模型的构建使用了多元线性回归方法,随后通过各种统计验证标准检查拟合和预测性能、可靠性和稳健性。通过多标准决策程序对模型进行了排名。研究结果表明,所提出的描述符选择方法优于 GA,Featurewiz 略优于 Boruta 和 ForwardSelector。这些构建的模型可以作为快速可靠预测 NACs 致突变性的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验