Suppr超能文献

基于缺氧参数构建并评估阻塞性睡眠呼吸暂停(OSA)患者睡眠呼吸事件类型的预测模型。

Construction and evaluation of a predictive model for the types of sleep respiratory events in patients with OSA based on hypoxic parameters.

机构信息

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China.

The Affiliated Hospital of Guizhou Medical University, Guizhou, China.

出版信息

Sleep Breath. 2024 Dec;28(6):2457-2467. doi: 10.1007/s11325-024-03147-5. Epub 2024 Aug 29.

Abstract

OBJECTIVE

To explore the differences and associations of hypoxic parameters among distinct types of respiratory events in patients with obstructive sleep apnea (OSA) and to construct prediction models for the types of respiratory events based on hypoxic parameters.

METHODS

A retrospective analysis was conducted on a cohort of 67 patients with polysomnography (PSG). All overnight recorded respiratory events with pulse oxygen saturation (SpO) desaturation were categorized into four categories: hypopnea (Hyp, 3409 events), obstructive apnea (OA, 5561 events), central apnea (CA, 1110 events) and mixed apnea (MA, 1372 events). All event recordings were exported separately from the PSG software as comma-separated variable (.csv) files, which were imported into custom-built MATLAB software for analysis. Based on 13 hypoxic parameters, artificial neural network (ANN) and binary logistic regression (BLR) were separately used for construction of Hyp, OA, CA and MA models. Receiver operating characteristic (ROC) curves were employed to compare the various predictive indicators of the two models for different respiratory event types, respectively.

RESULTS

Both ANN and BLR models suggested that 13 hypoxic parameters significantly influenced the classification of respiratory event types; The area under the ROC curves of the ANN models surpassed those of traditional BLR models respiratory event types.

CONCLUSION

The ANN models constructed based on the 13 hypoxic parameters exhibited superior predictive capabilities for distinct types of respiratory events, providing a feasible new tool for automatic identification of respiratory event types using sleep SpO.

摘要

目的

探讨阻塞性睡眠呼吸暂停(OSA)患者不同呼吸事件类型之间的低氧参数差异及相关性,并基于低氧参数构建呼吸事件类型的预测模型。

方法

对多导睡眠图(PSG)记录的 67 例患者进行回顾性分析。所有记录到的伴有脉搏血氧饱和度(SpO)下降的夜间呼吸事件均分为以下 4 类:低通气(Hyp,3409 次)、阻塞性呼吸暂停(OA,5561 次)、中枢性呼吸暂停(CA,1110 次)和混合性呼吸暂停(MA,1372 次)。将所有事件记录从 PSG 软件中以逗号分隔值(.csv)文件的形式单独导出,然后将其导入到定制的 MATLAB 软件中进行分析。基于 13 个低氧参数,分别使用人工神经网络(ANN)和二项逻辑回归(BLR)构建 Hyp、OA、CA 和 MA 模型。分别采用接收者操作特征(ROC)曲线比较两种模型对不同呼吸事件类型的各种预测指标。

结果

ANN 和 BLR 模型均表明 13 个低氧参数对呼吸事件类型的分类有显著影响;ANN 模型的 ROC 曲线下面积均大于传统 BLR 模型。

结论

基于 13 个低氧参数构建的 ANN 模型对不同类型的呼吸事件具有较好的预测能力,为利用睡眠 SpO 自动识别呼吸事件类型提供了一种可行的新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验