Suppr超能文献

基于心电图、脉搏血氧饱和度和体重指数的多层前馈神经网络阻塞性睡眠呼吸暂停检测模型。

A model for obstructive sleep apnea detection using a multi-layer feed-forward neural network based on electrocardiogram, pulse oxygen saturation, and body mass index.

机构信息

Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.

Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.

出版信息

Sleep Breath. 2021 Dec;25(4):2065-2072. doi: 10.1007/s11325-021-02302-6. Epub 2021 Mar 22.

Abstract

PURPOSE

To develop and evaluate a model for obstructive sleep apnea (OSA) detection using an artificial neural network (ANN) based on the combined features of body mass index (BMI), electrocardiogram (ECG), and pulse oxygen saturation (SpO2).

METHODS

Polysomnography (PSG) data for 148 patients with OSA and 33 unaffected individuals were included. A multi-layer feed-forward neural network (FNN) was used based on the features obtained from ECG, SpO2, and BMI. The receiver operating characteristic (ROC) curve and the metrics of accuracy, sensitivity, and specificity were used to evaluate the performance of the overall classification. Some other machine learning methods including linear discriminant, linear Support Vector Machine (SVM), Complex Tree, RUSBoosted Trees, and Logistic Regression were also used to compare their performance with the FNN.

RESULTS

The accuracy, sensitivity, and specificity of the proposed multi-layer FNN were 97.8%, 98.6%, and 93.9%, respectively, and the area under the ROC curve was 97.0%. Compared with the other machine learning methods mentioned above, the FNN achieved the highest performance.

CONCLUSIONS

The satisfactory performance of the proposed FNN model for OSA detection indicated that it is reliable to screen potential patients with OSA using the combined channels of ECG and SpO2 and also taking into account BMI. This strategy might be a viable alternative method for OSA diagnosis.

摘要

目的

开发和评估一种基于体重指数(BMI)、心电图(ECG)和脉搏血氧饱和度(SpO2)综合特征的人工神经网络(ANN)用于阻塞性睡眠呼吸暂停(OSA)检测的模型。

方法

纳入 148 例 OSA 患者和 33 例无 OSA 个体的多导睡眠图(PSG)数据。基于从 ECG、SpO2 和 BMI 获得的特征,使用多层前馈神经网络(FNN)。使用受试者工作特征(ROC)曲线和准确性、敏感性和特异性度量来评估总体分类的性能。还使用了其他一些机器学习方法,包括线性判别、线性支持向量机(SVM)、复杂树、RUSBoosted 树和逻辑回归,以比较它们与 FNN 的性能。

结果

提出的多层 FNN 的准确性、敏感性和特异性分别为 97.8%、98.6%和 93.9%,ROC 曲线下面积为 97.0%。与上述其他机器学习方法相比,FNN 具有最高的性能。

结论

所提出的 FNN 模型在 OSA 检测中的令人满意的性能表明,使用 ECG 和 SpO2 的组合通道并考虑 BMI 来筛选潜在的 OSA 患者是可靠的。这种策略可能是 OSA 诊断的一种可行替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验