文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

美国 COVID-19 缓解移动应用程序的使用背景:后疫情时代数据隐私的混合方法调查研究

Contextual Acceptance of COVID-19 Mitigation Mobile Apps in the United States: Mixed Methods Survey Study on Postpandemic Data Privacy.

机构信息

Department of Computer Science, University of Vermont, Burlington, VT, United States.

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States.

出版信息

J Med Internet Res. 2024 Aug 29;26:e57309. doi: 10.2196/57309.


DOI:10.2196/57309
PMID:39207832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11393507/
Abstract

BACKGROUND: The COVID-19 pandemic gave rise to countless user-facing mobile apps to help fight the pandemic ("COVID-19 mitigation apps"). These apps have been at the center of data privacy discussions because they collect, use, and even retain sensitive personal data from their users (eg, medical records and location data). The US government ended its COVID-19 emergency declaration in May 2023, marking a unique time to comprehensively investigate how data privacy impacted people's acceptance of various COVID-19 mitigation apps deployed throughout the pandemic. OBJECTIVE: This research aims to provide insights into health data privacy regarding COVID-19 mitigation apps and policy recommendations for future deployment of public health mobile apps through the lens of data privacy. This research explores people's contextual acceptance of different types of COVID-19 mitigation apps by applying the privacy framework of contextual integrity. Specifically, this research seeks to identify the factors that impact people's acceptance of data sharing and data retention practices in various social contexts. METHODS: A mixed methods web-based survey study was conducted by recruiting a simple US representative sample (N=674) on Prolific in February 2023. The survey includes a total of 60 vignette scenarios representing realistic social contexts that COVID-19 mitigation apps could be used. Each survey respondent answered questions about their acceptance of 10 randomly selected scenarios. Three contextual integrity parameters (attribute, recipient, and transmission principle) and respondents' basic demographics are controlled as independent variables. Regression analysis was performed to determine the factors impacting people's acceptance of initial data sharing and data retention practices via these apps. Qualitative data from the survey were analyzed to support the statistical results. RESULTS: Many contextual integrity parameter values, pairwise combinations of contextual integrity parameter values, and some demographic features of respondents have a significant impact on their acceptance of using COVID-19 mitigation apps in various social contexts. Respondents' acceptance of data retention practices diverged from their acceptance of initial data sharing practices in some scenarios. CONCLUSIONS: This study showed that people's acceptance of using various COVID-19 mitigation apps depends on specific social contexts, including the type of data (attribute), the recipients of the data (recipient), and the purpose of data use (transmission principle). Such acceptance may differ between the initial data sharing and data retention practices, even in the same context. Study findings generated rich implications for future pandemic mitigation apps and the broader public health mobile apps regarding data privacy and deployment considerations.

摘要

背景:COVID-19 大流行催生了无数面向用户的移动应用程序,以帮助抗击疫情(“COVID-19 缓解应用程序”)。这些应用程序一直是数据隐私讨论的焦点,因为它们从用户那里收集、使用甚至保留敏感的个人数据(例如,医疗记录和位置数据)。美国政府于 2023 年 5 月结束了 COVID-19 紧急状态声明,标志着全面调查数据隐私如何影响人们在整个大流行期间对各种 COVID-19 缓解应用程序的接受程度的独特时期。

目的:本研究旨在通过数据隐私视角,为 COVID-19 缓解应用程序的健康数据隐私提供见解,并为未来公共卫生移动应用程序的部署提供政策建议。本研究通过应用情境完整性隐私框架,探讨了人们对不同类型 COVID-19 缓解应用程序的情境接受程度。具体来说,本研究旨在确定影响人们在各种社会情境下接受数据共享和数据保留实践的因素。

方法:2023 年 2 月,通过在 Prolific 上招募简单的美国代表性样本(N=674),进行了一项混合方法的基于网络的调查研究。该调查包括 60 个虚拟场景,代表 COVID-19 缓解应用程序可能使用的现实社会情境。每位调查受访者回答了 10 个随机选择场景的接受程度问题。三个情境完整性参数(属性、接收者和传输原则)和受访者的基本人口统计学特征被控制为自变量。进行回归分析以确定影响人们通过这些应用程序接受初始数据共享和数据保留实践的因素。调查的定性数据也进行了分析,以支持统计结果。

结果:许多情境完整性参数值、情境完整性参数值的成对组合以及受访者的一些人口统计学特征对他们在各种社会情境下使用 COVID-19 缓解应用程序的接受程度有显著影响。在某些场景中,受访者对数据保留实践的接受程度与他们对初始数据共享实践的接受程度不同。

结论:本研究表明,人们对使用各种 COVID-19 缓解应用程序的接受程度取决于特定的社会情境,包括数据类型(属性)、数据接收者(接收者)和数据使用目的(传输原则)。在同一情境下,这种接受可能在初始数据共享和数据保留实践之间有所不同。研究结果为未来的大流行缓解应用程序和更广泛的公共卫生移动应用程序提供了有关数据隐私和部署考虑的丰富启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/d792ba6e3c96/jmir_v26i1e57309_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/f3cef133275b/jmir_v26i1e57309_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/f3f6cceb533e/jmir_v26i1e57309_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/8026a45b5346/jmir_v26i1e57309_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/c1ca4a2bbd60/jmir_v26i1e57309_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/bb77832feef1/jmir_v26i1e57309_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/d792ba6e3c96/jmir_v26i1e57309_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/f3cef133275b/jmir_v26i1e57309_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/f3f6cceb533e/jmir_v26i1e57309_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/8026a45b5346/jmir_v26i1e57309_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/c1ca4a2bbd60/jmir_v26i1e57309_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/bb77832feef1/jmir_v26i1e57309_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/622e/11393507/d792ba6e3c96/jmir_v26i1e57309_fig6.jpg

相似文献

[1]
Contextual Acceptance of COVID-19 Mitigation Mobile Apps in the United States: Mixed Methods Survey Study on Postpandemic Data Privacy.

J Med Internet Res. 2024-8-29

[2]
Post-COVID Public Health Surveillance and Privacy Expectations in the United States: Scenario-Based Interview Study.

JMIR Mhealth Uhealth. 2021-10-5

[3]
Attitudes Toward Mobile Apps for Pandemic Research Among Smartphone Users in Germany: National Survey.

JMIR Mhealth Uhealth. 2022-1-24

[4]
Technology, Privacy, and User Opinions of COVID-19 Mobile Apps for Contact Tracing: Systematic Search and Content Analysis.

J Med Internet Res. 2021-2-9

[5]
The Roles of General Health and COVID-19 Proximity in Contact Tracing App Usage: Cross-sectional Survey Study.

JMIR Public Health Surveill. 2021-8-18

[6]
Pulse Oximeter App Privacy Policies During COVID-19: Scoping Assessment.

JMIR Mhealth Uhealth. 2022-1-27

[7]
Motivations for Social Distancing and App Use as Complementary Measures to Combat the COVID-19 Pandemic: Quantitative Survey Study.

J Med Internet Res. 2020-8-27

[8]
Consumer Views on Using Digital Data for COVID-19 Control in the United States.

JAMA Netw Open. 2021-5-3

[9]
Patients and Stakeholders' Perspectives Regarding the Privacy, Security, and Confidentiality of Data Collected via Mobile Health Apps in Saudi Arabia: Protocol for a Mixed Method Study.

JMIR Res Protoc. 2024-5-22

[10]
Americans' perceptions of privacy and surveillance in the COVID-19 pandemic.

PLoS One. 2020

本文引用的文献

[1]
Differential Electronic Survey Response: Does Survey Fatigue Affect Everyone Equally?

J Surg Res. 2024-2

[2]
Rating norms should be calculated from cumulative link mixed effects models.

Behav Res Methods. 2023-8

[3]
Smartphone apps in the COVID-19 pandemic.

Nat Biotechnol. 2022-7

[4]
Monitoring Symptoms of COVID-19: Review of Mobile Apps.

JMIR Mhealth Uhealth. 2022-6-1

[5]
The US COVID-19 Trends and Impact Survey: Continuous real-time measurement of COVID-19 symptoms, risks, protective behaviors, testing, and vaccination.

Proc Natl Acad Sci U S A. 2021-12-21

[6]
Mobile Apps Leveraged in the COVID-19 Pandemic in East and South-East Asia: Review and Content Analysis.

JMIR Mhealth Uhealth. 2021-11-11

[7]
Effectiveness of contact tracing apps for SARS-CoV-2: a rapid systematic review.

BMJ Open. 2021-7-12

[8]
State of the Art in Adoption of Contact Tracing Apps and Recommendations Regarding Privacy Protection and Public Health: Systematic Review.

JMIR Mhealth Uhealth. 2021-6-10

[9]
Factors Influencing the Adoption of Contact Tracing Applications: Protocol for a Systematic Review.

JMIR Res Protoc. 2021-6-1

[10]
Adoption of COVID-19 Contact Tracing Apps: A Balance Between Privacy and Effectiveness.

J Med Internet Res. 2021-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索