Department of Epidemiology, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands.
BMJ Open. 2021 Jul 12;11(7):e050519. doi: 10.1136/bmjopen-2021-050519.
OBJECTIVE: To systematically review evidence on effectiveness of contact tracing apps (CTAs) for SARS-CoV-2 on epidemiological and clinical outcomes. DESIGN: Rapid systematic review. DATA SOURCES: EMBASE (OVID), MEDLINE (PubMed), BioRxiv and MedRxiv were searched up to 28 October 2020. STUDY SELECTION: Studies, both empirical and model-based, assessing effect of CTAs for SARS-CoV-2 on reproduction number (R), total number of infections, hospitalisation rate, mortality rate, and other epidemiologically and clinically relevant outcomes, were eligible for inclusion. DATA EXTRACTION: Empirical and model-based studies were critically appraised using separate checklists. Data on type of study (ie, empirical or model-based), sample size, (simulated) time horizon, study population, CTA type (and associated interventions), comparator and outcomes assessed, were extracted. The most important findings were extracted and narratively summarised. Specifically for model-based studies, characteristics and values of important model parameters were collected. RESULTS: 2140 studies were identified, of which 17 studies (2 empirical, 15 model-based studies) were eligible and included in this review. Both empirical studies were observational (non-randomised) studies and at high risk of bias, most importantly due to risk of confounding. Risk of bias of model-based studies was considered low for 12 out of 15 studies. Most studies demonstrated beneficial effects of CTAs on R, total number of infections and mortality rate. No studies assessed effect on hospitalisation. Effect size was dependent on model parameters values used, but in general, a beneficial effect was observed at CTA adoption rates of 20% or higher. CONCLUSIONS: CTAs have the potential to be effective in reducing SARS-CoV-2 related epidemiological and clinical outcomes, though effect size depends on other model parameters (eg, proportion of asymptomatic individuals, or testing delays), and interventions after CTA notification. Methodologically sound comparative empirical studies on effectiveness of CTAs are required to confirm findings from model-based studies.
目的:系统评价接触者追踪应用程序(CTA)在 SARS-CoV-2 对流行病学和临床结局的有效性方面的证据。
设计:快速系统评价。
数据来源:截至 2020 年 10 月 28 日,检索 EMBASE(OVID)、MEDLINE(PubMed)、BioRxiv 和 MedRxiv。
研究选择:符合纳入标准的研究为评估 CTA 在 SARS-CoV-2 复制数(R)、总感染人数、住院率、死亡率和其他流行病学和临床相关结局方面的效果的经验性和基于模型的研究。
数据提取:使用单独的清单对经验性和基于模型的研究进行批判性评价。提取研究类型(即经验性或基于模型)、样本量、(模拟)时间范围、研究人群、CTA 类型(和相关干预措施)、对照组和评估的结局等数据。提取并叙述总结最重要的发现。特别是对于基于模型的研究,收集了重要模型参数的特征和值。
结果:共确定了 2140 项研究,其中 17 项研究(2 项经验性研究,15 项基于模型的研究)符合纳入标准并纳入本综述。两项经验性研究均为观察性(非随机)研究,且存在较高的偏倚风险,最重要的是由于存在混杂的风险。15 项基于模型的研究中有 12 项被认为偏倚风险低。大多数研究表明 CTA 对 R、总感染人数和死亡率具有有益的影响。没有研究评估对住院的影响。效应大小取决于使用的模型参数值,但一般来说,在 CTA 采用率为 20%或更高时,观察到有益的效果。
结论:CTA 有可能降低 SARS-CoV-2 相关的流行病学和临床结局,但效应大小取决于其他模型参数(例如无症状个体的比例或检测延迟)以及 CTA 通知后的干预措施。需要方法学上合理的比较性经验研究来证实基于模型的研究结果。
Cochrane Database Syst Rev. 2022-2-1
Front Digit Health. 2022-5-3
Cochrane Database Syst Rev. 2022-7-22
JMIR Public Health Surveill. 2022-11-11
Cochrane Evid Synth Methods. 2024-4-29
PLoS Comput Biol. 2025-5-29
PLOS Glob Public Health. 2025-5-9
Healthcare (Basel). 2025-4-18
Phys Biol. 2021-6-23
Nat Commun. 2021-3-12
Cognit Comput. 2021-2-19
Cochrane Database Syst Rev. 2020-8-18
Nat Commun. 2021-1-11
Wellcome Open Res. 2021-3-31