Suppr超能文献

用于增强新鲜冷链物流配送的混合禁忌灰狼优化算法。

Hybrid Tabu-Grey wolf optimizer algorithm for enhancing fresh cold-chain logistics distribution.

机构信息

School of Business, Beijing Technology and Business University, Beijing, China.

出版信息

PLoS One. 2024 Aug 29;19(8):e0306166. doi: 10.1371/journal.pone.0306166. eCollection 2024.

Abstract

The increasing public demand for fresh products has catalyzed the requirement for cold chain logistics distribution systems. However, challenges such as temperature control and delivery delays have led a significant product loss and increased costs. To improve the current situation, a novel approach to optimize cold chain logistics distribution for fresh products will be presented in the paper, utilizing a hybrid Tabu-Grey wolf optimizer (TGWO) algorithm. The proposed hybrid approach combines Tabu search (TS) and Grey wolf optimizer (GWO), employing TS for exploration and GWO for exploitation, aiming to minimize distribution costs in total and establish efficient vehicle scheduling schemes considering various constraints. The effectiveness of the TGWO algorithm is demonstrated through experiments and case studies compared to other heuristic algorithms. Comparative analysis against traditional optimization methods, including Particle swarm optimization (PSO), Whale optimization algorithm (WOA), and original GWO, highlights its superior efficiency and solution quality. This study contributes theories by demonstrating the efficacy of hybrid optimization techniques in complex supply chain networks and dynamic market environments. The practical implication lies in the implementation of TGWO to bolster distribution efficiency, cost reduction, and product quality maintenance throughout the logistics process, offering valuable insights for operational and strategic improvements by decision-makers. However, the study has limitations in generalizability and assumptions, suggesting future research areas including exploring new search operators, applying additional parameters, and using the algorithm in diverse real-life scenarios to improve its effectiveness and applicability.

摘要

公众对新鲜产品的需求不断增加,促使冷链物流配送系统的需求也相应增加。然而,由于温度控制和交付延迟等挑战,导致了大量产品损失和成本增加。为了改善这种情况,本文提出了一种优化新鲜产品冷链物流配送的新方法,该方法利用混合禁忌灰狼优化器(TGWO)算法。所提出的混合方法将禁忌搜索(TS)和灰狼优化器(GWO)相结合,利用 TS 进行探索,利用 GWO 进行开发,旨在最小化总成本的分配,并考虑到各种约束条件建立有效的车辆调度方案。通过实验和案例研究,将 TGWO 算法与其他启发式算法进行比较,证明了其有效性。与传统优化方法(包括粒子群优化算法(PSO)、鲸鱼优化算法(WOA)和原始 GWO)的比较分析,突出了其效率和解决方案质量的优越性。本研究通过展示混合优化技术在复杂供应链网络和动态市场环境中的有效性,为理论做出了贡献。其实践意义在于通过实施 TGWO 来提高物流过程中的配送效率、降低成本和保持产品质量,为决策者提供了运营和战略改进的有价值的见解。然而,该研究在推广性和假设方面存在局限性,建议未来的研究领域包括探索新的搜索算子、应用其他参数以及在不同的实际场景中使用该算法,以提高其有效性和适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ca/11361424/f181fdd6cc7f/pone.0306166.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验