Charry Jorge, Tkatchenko Alexandre
Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.
J Chem Theory Comput. 2024 Sep 10;20(17):7469-7478. doi: 10.1021/acs.jctc.4c00784. Epub 2024 Aug 29.
Reliable numerical values of van der Waals (vdW) radii are required for constructing empirical force fields, vdW-inclusive density functional, and quantum-chemical methods, as well as for implicit solvent models. However, multiple definitions exist for vdW radii, involving either equilibrium or the closest contact distances between free or bonded atoms within molecules or crystals. For the paradigmatic case of the hydrogen atom, its reported vdW radius fluctuates between 2.15 and 3.70 Bohr depending on the definition, leading to a high uncertainty in calculations and different conceptual interpretations of noncovalent interactions. In this work, we systematically review different definitions and methodologies to establish the free and bonded vdW radii for hydrogen, based on equilibrium vdW distances in noncovalently bonded molecules, enveloping electron density cutoffs, noncovalent positron bonds in hydrogen anion dimer, vacuum virtual photon cloud caused by the hydrogen atom, and atomic dipole polarizability. By doing so, we show that the vdW radius of the free hydrogen atom is 3.16 ± 0.06 Bohr. By employing the most general and elegant definition of atomic vdW radius as a function of the atomic polarizability, we tabulate consistent values of vdW radii for all atoms in the periodic table up to = 118.
构建经验力场、包含范德华力的密度泛函和量子化学方法以及隐式溶剂模型都需要可靠的范德华(vdW)半径数值。然而,范德华半径存在多种定义,涉及分子或晶体中自由原子或键合原子之间的平衡距离或最近接触距离。对于氢原子这一典型例子,根据定义,其报道的范德华半径在2.15至3.70玻尔之间波动,这导致计算中存在高度不确定性以及对非共价相互作用的不同概念解释。在这项工作中,我们基于非共价键合分子中的平衡范德华距离、包络电子密度截止值、氢阴离子二聚体中的非共价正电子键、氢原子引起的真空虚拟光子云以及原子偶极极化率,系统地回顾了不同的定义和方法,以确定氢的自由和键合范德华半径。通过这样做,我们表明自由氢原子的范德华半径为3.16±0.06玻尔。通过采用将原子范德华半径定义为原子极化率函数的最通用且优雅的定义,我们列出了元素周期表中直至Z = 118的所有原子的一致范德华半径值。