Suppr超能文献

山奈全面评估:植物代谢组学分析及其对氧化应激生物标志物的影响。

Comprehensive assessment of Zingiber sianginensis: Phytometabolomic analysis and its impact on oxidative stress biomarkers.

机构信息

Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India.

Centre for GMP extraction Facility, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati 781101, India.

出版信息

J Pharm Biomed Anal. 2024 Dec 15;251:116421. doi: 10.1016/j.jpba.2024.116421. Epub 2024 Aug 15.

Abstract

In India, ginger is highly valued for cultural and medicinal purposes. Besides traditional uses, ginger has been proven for its efficacy in cancer, chemotherapy-induced nausea, bacterial infections, neuroinflammation, and oxidative stress. This study focuses on Zingiber sianginensis, a rare ginger species in the Siang region of Arunachal Pradesh, India. This study studied pharmacognostical evaluation, phytometabolomics analysis, and its effect on oxidative stress biomarkers. Microscopic and chemical tests were employed for pharmacognostical evaluation, revealing distinctive characteristics of Zingiber sianginensis, such as non-close collateral vascular bundles and unique cork layers. Chemical tests, including the phloroglucinol and hydrochloric acid test, differentiated Zingiber sianginensis from Zingiber officinale Roscoe. Phytometabolomics analysis, using Gas Chromatography-Mass Spectrometry (GC/MS) and Liquid Chromatography-Electrospray Ionisation-Quadrupole Time of Flight-Mass Spectrometry (LC-ESI-QTOF-MS/MS) techniques, identified a diverse range of metabolites in Zingiber sianginensis, including polyphenols, monoterpenoids, diterpenoids, sesquiterpenoids, and organic compounds. The LC-ESI-QTOF-MS/MS analysis revealed 158 compounds, verified through cross-referencing with established databases. Heavy metal analysis by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) confirmed that Zingiber sianginensis complies with safety standards, showing concentrations of heavy metals within acceptable limits. The isolation and characterization of compounds from Zingiber sianginensis identified natural products such as (R)-(-)- alpha-Curcumene (1), 1-Dehydro-[10]-gingerdione (2), 6-Shogaol (3), and 6-Gingerol (4). Quantification of 6-gingerol revealed that Zingiber sianginensis contains approximately twice the amount compared to Zingiber officinale Roscoe's, suggesting its potential as a source for higher 6-gingerol content. The hydroalcoholic extract of Zingiber sianginensis exhibited antioxidant properties, reducing oxidative stress biomarkers in human dermal fibroblast cells treated with rotenone. Allantoin and 3-bromotyrosine levels significantly decreased, indicating the extract's potential in combating oxidative stress-related disorders. Overall, this comprehensive study provides valuable insights into the pharmacognostical, phytometabolomic, and safety aspects of Zingiber sianginensis, highlighting its potential as a source of bioactive compounds with health benefits.

摘要

在印度,生姜因其文化和药用价值而备受重视。除了传统用途外,生姜已被证明对癌症、化疗引起的恶心、细菌感染、神经炎症和氧化应激有效。本研究专注于印度阿萨姆邦 Siang 地区的一种罕见生姜物种——Zingiber sianginensis。本研究对其进行了生药学评价、植物代谢组学分析及其对氧化应激生物标志物的影响。采用显微镜和化学测试进行生药学评价,揭示了 Zingiber sianginensis 的独特特征,如非闭合的侧生维管束和独特的软木层。化学测试,包括间苯三酚和盐酸测试,将 Zingiber sianginensis 与 Zingiber officinale Roscoe 区分开来。植物代谢组学分析采用气相色谱-质谱联用(GC/MS)和液相色谱-电喷雾电离-四极杆飞行时间-质谱联用(LC-ESI-QTOF-MS/MS)技术,鉴定了 Zingiber sianginensis 中的多种代谢物,包括多酚、单萜、二萜、倍半萜和有机化合物。LC-ESI-QTOF-MS/MS 分析显示了 158 种化合物,通过与已建立的数据库交叉参考进行了验证。电感耦合等离子体质谱(ICP-MS)进行的重金属分析证实,Zingiber sianginensis 符合安全标准,重金属浓度在可接受范围内。从 Zingiber sianginensis 中分离和鉴定化合物,鉴定出天然产物,如(R)-(-)-α-姜黄烯(1)、1-脱氢-[10]-姜二酮(2)、6-姜辣素(3)和 6-姜酚(4)。6-姜酚的定量分析表明,Zingiber sianginensis 中的含量约为 Zingiber officinale Roscoe 的两倍,表明其可能是更高 6-姜酚含量的来源。Zingiber sianginensis 的水醇提取物具有抗氧化特性,可降低鱼藤酮处理的人真皮成纤维细胞中的氧化应激生物标志物。尿囊素和 3-溴酪氨酸水平显著降低,表明该提取物在对抗氧化应激相关疾病方面具有潜力。总的来说,本综合研究提供了关于 Zingiber sianginensis 的生药学、植物代谢组学和安全性方面的有价值的见解,突出了其作为具有健康益处的生物活性化合物来源的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验