Wang Ting, Liu Penggao, Chen Xinyue, Guo Yingying, He Chunrong, Guo Jia, Liu Weifang, Gao Shasha, Lv Yan, Liu Kaiyu
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, China.
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):301-310. doi: 10.1016/j.jcis.2024.08.175. Epub 2024 Aug 24.
Aqueous zinc-ion batteries (AZIBs) hold promising applications owing to their safety, cost-effectiveness, and competitive capacity. However, issues such as zinc dendritic formation and side reactions severely impede their practical viability. Utilizing carbon quantum dots (CQDs) to modify cheap, tenacious, and highly hydrophilic filter paper (FP) as separator effectively improves the electrochemical performance of zinc ion energy storage systems. The structured arrangement of CQDs redistributes zinc ion transport and induces uniform zinc icon deposition, thereby improving zinc ion reaction kinetics. Moreover, the rich functional groups on the surface of CQDs readily form hydrogen bonds with active HO, further inhibiting corrosion reactions. With the assistance of CQDs, the FP-CQDs separator maintains high ionic conductivity and a high zinc-ion transference number, ensuring dendrite-free and corrosion-resistant operation with high coulombic efficiency and a prolonged lifespan of 1200 h at 1 mA cm. Zn//AC hybrid capacitors incorporating FP-CQDs separator demonstrate superior capacity retention compared to those using FP separator alone, with a high capacity retention after 600 cycles at 1 A/g, while Zn//VO full batteries also exhibit excellent cycling stability. Given these findings, this study presents a new composite separator for advanced aqueous zinc-ion energy storage systems.
水系锌离子电池(AZIBs)因其安全性、成本效益和具有竞争力的容量而具有广阔的应用前景。然而,锌枝晶形成和副反应等问题严重阻碍了它们的实际应用可行性。利用碳量子点(CQDs)对廉价、坚韧且高度亲水性的滤纸(FP)进行改性作为隔膜,可有效提高锌离子储能系统的电化学性能。CQDs的结构化排列重新分布了锌离子传输,并诱导锌离子均匀沉积,从而改善锌离子反应动力学。此外,CQDs表面丰富的官能团易于与活性羟基形成氢键,进一步抑制腐蚀反应。在CQDs的辅助下,FP-CQDs隔膜保持高离子电导率和高锌离子迁移数,确保无枝晶和抗腐蚀运行,库仑效率高,在1 mA cm下寿命延长至1200 h。与仅使用FP隔膜的锌//活性炭混合电容器相比,采用FP-CQDs隔膜的锌//活性炭混合电容器在1 A/g下循环600次后具有更高的容量保持率,而锌//氧化钒全电池也表现出优异的循环稳定性。基于这些发现,本研究为先进的水系锌离子储能系统提出了一种新型复合隔膜。