Suppr超能文献

设计和验证一种用于老年糖尿病肾病保护的临床决策支持算法。

Designing and validating a clinical decision support algorithm for diabetic nephroprotection in older patients.

机构信息

College of Pharmacy - Clinical Pharmacy and Practice, Qatar University, Doha, Qatar.

Universite de Montreal, Montreal, Quebec, Canada.

出版信息

BMJ Health Care Inform. 2024 Aug 28;31(1):e100869. doi: 10.1136/bmjhci-2023-100869.

Abstract

BACKGROUND

Older patients with diabetic kidney disease (DKD) often do not receive optimal pharmacological treatment. Current clinical practice guidelines (CPGs) do not incorporate the concept of personalised care. Clinical decision support (CDS) algorithms that consider both evidence and personalised care to improve patient outcomes can improve the care of older adults. The aim of this research is to design and validate a CDS algorithm for prescribing renin-angiotensin-aldosterone system inhibitors (RAASi) for older patients with diabetes.

METHODS

The design of the CDS tool included the following phases: (1) gathering evidence from systematic reviews and meta-analyses of randomised clinical trials to determine the number needed to treat (NNT) and time-to-benefit (TTB) values applicable to our target population for use in the algorithm. (2) Building a list of potential cases that addressed different prescribing scenarios (starting, adding or switching to RAASi). (3) Reviewing relevant guidelines and extracting all recommendations related to prescribing RAASi for DKD. (4) Matching NNT and TTB with specific clinical cases. (5) Validating the CDS algorithm using Delphi technique.

RESULTS

We created a CDS algorithm that covered 15 possible scenarios and we generated 36 personalised and nine general recommendations based on the calculated and matched NNT and TTB values and considering the patient's life expectancy and functional capacity. The algorithm was validated by experts in three rounds of Delphi study.

CONCLUSION

We designed an evidence-informed CDS algorithm that integrates considerations often overlooked in CPGs. The next steps include testing the CDS algorithm in a clinical trial.

摘要

背景

患有糖尿病肾病(DKD)的老年患者通常无法接受最佳的药物治疗。当前的临床实践指南(CPG)并未纳入个性化护理的概念。考虑到证据和个性化护理以改善患者结局的临床决策支持(CDS)算法可以改善老年人的护理。本研究旨在设计和验证一种用于为患有糖尿病的老年患者开具肾素-血管紧张素-醛固酮系统抑制剂(RAASi)的 CDS 算法。

方法

CDS 工具的设计包括以下阶段:(1)从随机临床试验的系统评价和荟萃分析中收集证据,以确定适用于我们目标人群的 NNT 和获益时间(TTB)值,用于算法。(2)构建一个潜在病例列表,解决不同的处方场景(开始、添加或切换到 RAASi)。(3)审查相关指南并提取与 DKD 开具 RAASi 相关的所有建议。(4)将 NNT 和 TTB 与特定临床病例匹配。(5)使用 Delphi 技术验证 CDS 算法。

结果

我们创建了一个涵盖 15 种可能情况的 CDS 算法,并根据计算和匹配的 NNT 和 TTB 值生成了 36 条个性化和 9 条一般性建议,同时考虑了患者的预期寿命和功能能力。该算法在三轮 Delphi 研究中得到了专家的验证。

结论

我们设计了一种基于证据的 CDS 算法,该算法整合了 CPG 中经常被忽视的考虑因素。下一步包括在临床试验中测试 CDS 算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb9/11367403/03b42de840a8/bmjhci-31-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验