Suppr超能文献

胃癌手术前预测营养风险的列线图。

A nomogram for predicting nutritional risk before gastric cancer surgery.

机构信息

Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.

Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.

出版信息

Asia Pac J Clin Nutr. 2024 Dec;33(4):529-538. doi: 10.6133/apjcn.202412_33(4).0007.

Abstract

BACKGROUND AND OBJECTIVES

Gastric cancer (GC) is the fourth leading cause of cancer death worldwide. Patients with GC have higher nutritional risk. This study aimed to construct a nomogram model for predicting preoperative nutritional risk in patients with GC in order to assess preoperative nutritional risk in patients more precisely.

METHODS AND STUDY DESIGN

Patients diagnosed with GC and undergoing surgical treatment were included in this study. Data was collected through clinical information, laboratory testing, and radiomics-derived characteristics. Least absolute shrinkage selection operator (LASSO) regression analysis and multi-variable logistic regression were employed to construct a clinical prediction model, which takes the form of a logistic nomogram. The effectiveness of the nomogram model was evaluated using receiver operat-ing characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).

RESULTS

A total of three predictors, namely body mass index (BMI), hemoglobin (Hb) and radiomics characteristic score (Radscore) were identified by LASSO regression analysis from a total of 21 variables studied. The model constructed using these three predictors displayed medium prediction ability. The area under the ROC curve was 0.895 (95% CI 0.844-0.945) in the training set, with a cutoff value of 0.651, precision of 0.957, and sensitivity of 0.718. In the validation set, it was 0.880 (95% CI 0.806-0.954), with a cutoff value of 0.655, precision of 0.930, and sensitivity of 0.698. DCA also confirmed the clinical benefit of the combined model.

CONCLUSIONS

This simple and dependable nomogram model for clinical prediction can assist physicians in assessing preoperative nutritional risk in GC patients in a time-efficient and accurate manner to facilitate early identification and diagnosis.

摘要

背景与目的

胃癌(GC)是全球第四大癌症死亡原因。GC 患者存在更高的营养风险。本研究旨在构建一个预测 GC 患者术前营养风险的列线图模型,以更准确地评估患者的术前营养风险。

方法和研究设计

本研究纳入了诊断为 GC 并接受手术治疗的患者。通过临床信息、实验室检查和放射组学特征收集数据。使用最小绝对收缩和选择算子(LASSO)回归分析和多变量逻辑回归构建了一个列线图模型。使用接受者操作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估列线图模型的有效性。

结果

通过 LASSO 回归分析从 21 个研究变量中确定了三个预测因子,即体重指数(BMI)、血红蛋白(Hb)和放射组学特征评分(Radscore)。使用这三个预测因子构建的模型显示出中等的预测能力。在训练集中,ROC 曲线下面积为 0.895(95%CI 0.844-0.945),截断值为 0.651,精确率为 0.957,灵敏度为 0.718。在验证集中,它为 0.880(95%CI 0.806-0.954),截断值为 0.655,精确率为 0.930,灵敏度为 0.698。DCA 也证实了联合模型的临床获益。

结论

这个简单可靠的临床预测列线图模型可以帮助医生更高效、准确地评估 GC 患者的术前营养风险,有助于早期识别和诊断。

相似文献

1
A nomogram for predicting nutritional risk before gastric cancer surgery.胃癌手术前预测营养风险的列线图。
Asia Pac J Clin Nutr. 2024 Dec;33(4):529-538. doi: 10.6133/apjcn.202412_33(4).0007.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验