State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
Department of Computer Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China.
Trends Biotechnol. 2024 Nov;42(11):1551-1575. doi: 10.1016/j.tibtech.2024.05.005. Epub 2024 Aug 28.
Current biotechnology relies on a few well-studied model organisms, such as Escherichia coli and Saccharomyces cerevisiae, for which abundant information and efficient toolkits are available for genetic manipulation, but which lack industrially favorable characteristics. Non-model industrial microorganisms usually do not have effective and/or efficient genome-engineering toolkits, which hampers the development of microbial cell factories to meet the fast-growing bioeconomy. In this study, using the non-model ethanologenic bacterium Zymomonas mobilis as an example, we developed a workflow to mine and temper the elements of restriction-modification (R-M), CRISPR/Cas, toxin-antitoxin (T-A) systems, and native plasmids, which are hidden within industrial microorganisms themselves, as efficient genome-editing toolkits, and established a genome-wide iterative and continuous editing (GW-ICE) system for continuous genome editing with high efficiency. This research not only provides tools and pipelines for engineering the non-model polyploid industrial microorganism Z. mobilis efficiently, but also sets a paradigm to overcome biotechnological limitations in other genetically recalcitrant non-model industrial microorganisms.
目前的生物技术依赖于少数经过充分研究的模式生物,如大肠杆菌和酿酒酵母,这些生物有丰富的信息和高效的遗传操作工具包,但缺乏工业上有利的特性。非模式工业微生物通常没有有效的和/或高效的基因组工程工具包,这阻碍了微生物细胞工厂的发展,以满足快速增长的生物经济的需求。在这项研究中,我们以非模式乙醇生产菌运动发酵单胞菌为模型,开发了一种挖掘和调整限制修饰(R-M)、CRISPR/Cas、毒素-抗毒素(T-A)系统和天然质粒等元素的工作流程,这些元素隐藏在工业微生物本身内部,可以作为高效的基因组编辑工具包,并建立了一个全基因组迭代和连续编辑(GW-ICE)系统,用于高效的连续基因组编辑。这项研究不仅为高效工程化非模式多倍体工业微生物运动发酵单胞菌提供了工具和途径,也为克服其他遗传上顽固的非模式工业微生物中的生物技术限制提供了范例。