Suppr超能文献

用于[具体对象未提及]的CRISPR/Cas9基因组编辑工具箱的开发及其在次黄嘌呤生物合成中的应用。

Development of a CRISPR/Cas9 genome editing toolbox for and its application in hypoxanthine biosynthesis.

作者信息

Ouyang Zhilin, Zhang Xinyu, Hou Xinyi, Huang Jiabei, Lin Ying, Zheng Suiping

机构信息

Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.

Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.

出版信息

Synth Syst Biotechnol. 2025 Jun 25;10(4):1190-1199. doi: 10.1016/j.synbio.2025.06.010. eCollection 2025 Dec.

Abstract

, a high-GC Gram-positive bacterium with significant industrial potential, has faced limitations due to the lack of efficient genetic tools. In this study, we developed a CRISPR/Cas9-based genome editing platform specifically tailored for . First, electroporation efficiency was optimized to 1.81 ± 0.16 × 10 CFU (colony forming units)/μg plasmid DNA through medium selection, pulse parameter adjustments (2.5 kV, 2 pulses), and concentration optimization of cell wall-weakening agents (3.0 % glycine, 0.25 % isoniazid). Three functional shuttle vectors (p99E-pCG1, p19-Kan, p19-Spe) were constructed, enabling stable heterologous gene expression. By engineering a tightly regulated Cas9 expression system (P promoter with dual LacO∗ operators), we achieved high-efficiency genome editing, with deletion efficiencies of 81.2-98.6 % for 1.7-50 kb fragments and insertion efficiencies of 27.5-65.2 % for 1-5 kb fragments. CRISPR/Cas9-assisted ssDNA recombineering facilitated single/triple nucleotide changes with >90 % efficiency. Applying this toolbox, we engineered for hypoxanthine biosynthesis by combining deletion with integration of heterologous feedback-resistant and endogenous deregulation ( ), achieving a titer of 0.047 g/L. This study establishes a robust genetic platform for , accelerating its industrial application in the production of biochemicals and biofuels.

摘要

[细菌名称]是一种具有巨大工业潜力的高GC含量革兰氏阳性菌,但由于缺乏有效的遗传工具而面临局限性。在本研究中,我们开发了一种专门为[细菌名称]量身定制的基于CRISPR/Cas9的基因组编辑平台。首先,通过培养基选择、脉冲参数调整(2.5 kV,2个脉冲)和细胞壁弱化剂浓度优化(3.0%甘氨酸,0.25%异烟肼),将电穿孔效率优化至1.81±0.16×10 CFU(菌落形成单位)/μg质粒DNA。构建了三种功能性穿梭载体(p99E-pCG1、p19-Kan、p19-Spe),实现了稳定的异源基因表达。通过构建一个严格调控的Cas9表达系统(带有双LacO∗操纵子的P启动子),我们实现了高效的基因组编辑,1.7 - 50 kb片段的缺失效率为81.2 - 98.6%,1 - 5 kb片段的插入效率为27.5 - 65.2%。CRISPR/Cas9辅助的单链DNA重组工程促进了单/三核苷酸变化,效率>90%。应用这个工具箱,我们通过将[基因名称1]缺失与异源反馈抗性[基因名称2]的整合以及内源性[基因名称3]的去调控([具体操作])对[细菌名称]进行工程改造,实现了0.047 g/L的产量。本研究为[细菌名称]建立了一个强大的遗传平台,加速了其在生化和生物燃料生产中的工业应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验