Suppr超能文献

双胞胎神经影像学分析有助于提高自闭症谱系障碍青少年的分类准确性。

Twinned neuroimaging analysis contributes to improving the classification of young people with autism spectrum disorder.

机构信息

Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

College of Health Solutions, Arizona State University, Phoenix, AZ, USA.

出版信息

Sci Rep. 2024 Aug 29;14(1):20120. doi: 10.1038/s41598-024-71174-z.

Abstract

Autism spectrum disorder (ASD) is diagnosed using comprehensive behavioral information. Neuroimaging offers additional information but lacks clinical utility for diagnosis. This study investigates whether multi-forms of magnetic resonance imaging (MRI) contrast can be used individually and in combination to produce a categorical classification of young individuals with ASD. MRI data were accessed from the Autism Brain Imaging Data Exchange (ABIDE). Young participants (ages 2-30) were selected, and two group cohorts consisted of 702 participants: 351 ASD and 351 controls. Image-based classification was performed using one-channel and two-channel inputs to 3D-DenseNet deep learning networks. The models were trained and tested using tenfold cross-validation. Two-channel models were twinned with combinations of structural MRI (sMRI) maps and amplitude of low-frequency fluctuations (ALFF) or fractional ALFF (fALFF) maps from resting-state functional MRI (rs-fMRI). All models produced classification accuracy that exceeded 65.1%. The two-channel ALFF-sMRI model achieved the highest mean accuracy of 76.9% ± 2.34. The one-channel ALFF-based model alone had mean accuracy of 72% ± 3.1. This study leveraged the ABIDE dataset to produce ASD classification results that are comparable and/or exceed literature values. The deep learning approach was conducive to diverse neuroimaging inputs. Findings reveal that the ALFF-sMRI two-channel model outperformed all others.

摘要

自闭症谱系障碍 (ASD) 的诊断需要综合行为信息。神经影像学提供了额外的信息,但缺乏临床诊断效用。本研究旨在探讨多模态磁共振成像 (MRI) 对比是否可以单独使用或组合使用,对 ASD 年轻个体进行分类。MRI 数据来自自闭症脑影像数据交换库 (ABIDE)。选择了年轻参与者(年龄 2-30 岁),并组成了两个群组队列,每个队列有 351 名参与者:ASD 组 351 名,对照组 351 名。基于图像的分类是使用 3D-DenseNet 深度学习网络的单通道和双通道输入来完成的。该模型使用十折交叉验证进行训练和测试。双通道模型与结构磁共振成像 (sMRI) 图谱和静息状态功能磁共振成像 (rs-fMRI) 的低频波动幅度 (ALFF) 或分数 ALFF (fALFF) 图谱的组合进行了配对。所有模型的分类准确率都超过了 65.1%。双通道 ALFF-sMRI 模型的平均准确率最高,为 76.9%±2.34。单通道基于 ALFF 的模型的平均准确率为 72%±3.1。本研究利用 ABIDE 数据集产生了与文献值相当或优于文献值的 ASD 分类结果。深度学习方法有利于多种神经影像学输入。研究结果表明,ALFF-sMRI 双通道模型优于其他所有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a849/11362281/0673455d5a2a/41598_2024_71174_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验