Suppr超能文献

使用深度学习技术揭示自闭症谱系障碍幼儿和青少年大脑的差异。

Uncovering Brain Differences in Preschoolers and Young Adolescents with Autism Spectrum Disorder Using Deep Learning.

机构信息

Department of Radiology, First Medical Center, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, P. R. China.

Department of Computer and Information Technology, Purdue University, 401 N. Grant St, West Lafayette, IN, USA.

出版信息

Int J Neural Syst. 2022 Sep;32(9):2250044. doi: 10.1142/S0129065722500447. Epub 2022 Aug 9.

Abstract

Identifying brain abnormalities in autism spectrum disorder (ASD) is critical for early diagnosis and intervention. To explore brain differences in ASD and typical development (TD) individuals by detecting structural features using T1-weighted magnetic resonance imaging (MRI), we developed a deep learning-based approach, three-dimensional (3D)-ResNet with inception (I-ResNet), to identify participants with ASD and TD and propose a gradient-based backtracking method to pinpoint image areas that I-ResNet uses more heavily for classification. The proposed method was implemented in a preschool dataset with 110 participants and a public autism brain imaging data exchange (ABIDE) dataset with 1099 participants. An extra epilepsy dataset with 200 participants with clear degeneration in the parahippocampal area was applied as a verification and an extension. Among the datasets, we detected nine brain areas that differed significantly between ASD and TD. From the ROC in PASD and ABIDE, the sensitivity was 0.88 and 0.86, specificity was 0.75 and 0.62, and area under the curve was 0.787 and 0.856. In a word, I-ResNet with gradient-based backtracking could identify brain differences between ASD and TD. This study provides an alternative computer-aided technique for helping physicians to diagnose and screen children with an potential risk of ASD with deep learning model.

摘要

识别自闭症谱系障碍(ASD)中的大脑异常对于早期诊断和干预至关重要。为了通过检测 T1 加权磁共振成像(MRI)的结构特征来探索 ASD 和典型发育(TD)个体的大脑差异,我们开发了一种基于深度学习的方法,即三维(3D)-ResNet 与 inception(I-ResNet),用于识别 ASD 和 TD 参与者,并提出了一种基于梯度回溯的方法来确定 I-ResNet 用于分类的图像区域。该方法在一个有 110 名参与者的学龄前数据集和一个有 1099 名参与者的公共自闭症脑成像数据交换(ABIDE)数据集上进行了实施。我们还应用了一个额外的癫痫数据集,其中有 200 名参与者的海马旁区有明显退化,作为验证和扩展。在这些数据集中,我们检测到 ASD 和 TD 之间存在九个显著不同的大脑区域。在 PASD 和 ABIDE 的 ROC 中,敏感性分别为 0.88 和 0.86,特异性分别为 0.75 和 0.62,曲线下面积分别为 0.787 和 0.856。总之,基于梯度回溯的 I-ResNet 可以识别 ASD 和 TD 之间的大脑差异。这项研究为帮助医生使用深度学习模型诊断和筛查有潜在 ASD 风险的儿童提供了一种替代的计算机辅助技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验