Suppr超能文献

磁共振成像的字母组合图案和热图用于评估不孕症患者子宫肌瘤切除术的建议:一项初步研究。

Monogram and Heat Map on Magnetic Resonance Imaging to Evaluate the Recommendation for Myomectomy in Patients with Infertility: A Pilot Study.

作者信息

Yokoe Takuya, Kita Masato, Okada Hidetaka

机构信息

Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Sin-machi, Hirakata, 573-1191, Osaka, Japan.

出版信息

Reprod Sci. 2025 Jan;32(1):91-102. doi: 10.1007/s43032-024-01667-9. Epub 2024 Aug 29.

Abstract

Uterine myomas can cause infertility. Studies are attempting to determine the indications for myomectomy. However, the multiplicity and localization of myomas complicate this issue. We aimed to develop a visualization tool to aid patients with infertility in their decision-making for myomectomy. We included 191 women with uterine myoma attending an outpatient infertility clinic, of whom 124 patients underwent myomectomy. Of these, 65 (52.4%) patients became pregnant within 17.6 months after surgery, and 54 (83.1%) of them had a live birth. A logistic regression model predicting the pregnancy rate (area under the curve, 0.82; 95% confidence interval, 0.74-0.89; validation value, 74.6%) was generated using the leave-one-out cross-validation method. This model incorporated five factors: age, maximum level of infertility intervention following myomectomy, presence of submucosal myoma, maximum diameter of the myoma, and type of myomas (multiple or single). We successfully visualized the degree of involvement of each factor in the pregnancy rate by developing a nomogram based on this model. We expanded the data from the preoperative magnetic resonance images and applied machine learning using a convolutional neural network. The classification accuracy was 71.4% for sensitivity and 77.7% for specificity. Heatmap images, generated using gradient-weighted class activation mapping to show the classification results of this model, could distinguish between myomas that required enucleation and those that did not. Although a larger sample size is needed to further validate our findings, this innovative pilot study demonstrates the potential of machine learning to refine assessment criteria and improve patient decision-making.

摘要

子宫肌瘤可导致不孕。多项研究试图确定肌瘤切除术的指征。然而,肌瘤的多发性和位置使这一问题变得复杂。我们旨在开发一种可视化工具,以帮助不孕患者在决定是否进行肌瘤切除术时提供参考。我们纳入了191名在门诊不孕诊所就诊的子宫肌瘤女性患者,其中124例患者接受了肌瘤切除术。在这些患者中,65例(52.4%)在术后17.6个月内怀孕,其中54例(83.1%)顺利分娩。使用留一法交叉验证方法生成了一个预测妊娠率的逻辑回归模型(曲线下面积为0.82;95%置信区间为0.74 - 0.89;验证值为74.6%)。该模型纳入了五个因素:年龄、肌瘤切除术后不孕干预的最高级别、黏膜下肌瘤的存在、肌瘤的最大直径以及肌瘤类型(多发或单发)。我们基于该模型成功绘制了列线图,直观展示了各因素对妊娠率的影响程度。我们扩展了术前磁共振图像的数据,并使用卷积神经网络进行机器学习。敏感性的分类准确率为71.4%,特异性的分类准确率为77.7%。利用梯度加权类激活映射生成的热图图像来展示该模型的分类结果,能够区分需要摘除的肌瘤和不需要摘除的肌瘤。尽管需要更大的样本量来进一步验证我们的研究结果,但这项创新性的初步研究证明了机器学习在完善评估标准和改善患者决策方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验