Suppr超能文献

SpikeFlow:利用掺入对照对ChIP-Seq数据进行自动化灵活分析

SpikeFlow: automated and flexible analysis of ChIP-Seq data with spike-in control.

作者信息

Bressan Davide, Fernández-Pérez Daniel, Romanel Alessandro, Chiacchiera Fulvio

机构信息

Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo - Trento, Italy.

Quantitative Stem Cell Dynamics Laboratory, IRB Barcelona, Carrer de Baldiri Reixac 10, 08028 Barcelona, Spain.

出版信息

NAR Genom Bioinform. 2024 Aug 29;6(3):lqae118. doi: 10.1093/nargab/lqae118. eCollection 2024 Sep.

Abstract

ChIP with reference exogenous genome (ChIP-Rx) is widely used to study histone modification changes across different biological conditions. A key step in the bioinformatics analysis of this data is calculating the normalization factors, which vary from the standard ChIP-seq pipelines. Choosing and applying the appropriate normalization method is crucial for interpreting the biological results. However, a comprehensive pipeline for complete ChIP-Rx data analysis is lacking. To address these challenges, we introduce SpikeFlow, an integrated Snakemake workflow that combines features from various existing tools to streamline ChIP-Rx data processing and enhance usability. SpikeFlow automates spike-in data scaling and provides multiple normalization options. It also performs peak calling and differential analysis with distinct modalities, enabling the detection of enrichment regions for histone modifications and transcription factor binding. Our workflow runs in-depth quality control at all the processing steps and generates an analysis report with tables and graphs to facilitate results interpretation. We validated the pipeline by performing a comparative analysis with DiffBind and SpikChIP, demonstrating robust performances in various biological models. By combining diverse functionalities into a single platform, SpikeFlow aims to simplify ChIP-Rx data analysis for the research community.

摘要

参考外源性基因组染色质免疫沉淀(ChIP-Rx)被广泛用于研究不同生物学条件下的组蛋白修饰变化。该数据生物信息学分析中的一个关键步骤是计算标准化因子,这与标准的ChIP-seq流程不同。选择并应用合适的标准化方法对于解释生物学结果至关重要。然而,目前缺乏一个完整的ChIP-Rx数据分析综合流程。为应对这些挑战,我们引入了SpikeFlow,这是一个集成的Snakemake工作流程,它结合了各种现有工具的功能,以简化ChIP-Rx数据处理并提高可用性。SpikeFlow可自动进行掺入数据缩放并提供多种标准化选项。它还通过不同的模式进行峰检测和差异分析,能够检测组蛋白修饰和转录因子结合的富集区域。我们的工作流程在所有处理步骤中进行深入的质量控制,并生成带有表格和图表的分析报告,以方便结果解释。我们通过与DiffBind和SpikChIP进行比较分析来验证该流程,证明其在各种生物学模型中都具有强大的性能。通过将多种功能整合到一个平台中,SpikeFlow旨在为研究界简化ChIP-Rx数据分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ead1/11358820/16e2c95a1ea3/lqae118fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验