Suppr超能文献

《ChIP-seq 数据综合分析实用指南》

Practical guidelines for the comprehensive analysis of ChIP-seq data.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.

出版信息

PLoS Comput Biol. 2013;9(11):e1003326. doi: 10.1371/journal.pcbi.1003326. Epub 2013 Nov 14.

Abstract

Mapping the chromosomal locations of transcription factors, nucleosomes, histone modifications, chromatin remodeling enzymes, chaperones, and polymerases is one of the key tasks of modern biology, as evidenced by the Encyclopedia of DNA Elements (ENCODE) Project. To this end, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the standard methodology. Mapping such protein-DNA interactions in vivo using ChIP-seq presents multiple challenges not only in sample preparation and sequencing but also for computational analysis. Here, we present step-by-step guidelines for the computational analysis of ChIP-seq data. We address all the major steps in the analysis of ChIP-seq data: sequencing depth selection, quality checking, mapping, data normalization, assessment of reproducibility, peak calling, differential binding analysis, controlling the false discovery rate, peak annotation, visualization, and motif analysis. At each step in our guidelines we discuss some of the software tools most frequently used. We also highlight the challenges and problems associated with each step in ChIP-seq data analysis. We present a concise workflow for the analysis of ChIP-seq data in Figure 1 that complements and expands on the recommendations of the ENCODE and modENCODE projects. Each step in the workflow is described in detail in the following sections.

摘要

绘制转录因子、核小体、组蛋白修饰、染色质重塑酶、伴侣蛋白和聚合酶的染色体位置是现代生物学的关键任务之一,这一点可以从 DNA 元件百科全书 (ENCODE) 项目中得到证明。为此,染色质免疫沉淀 followed by high-throughput sequencing (ChIP-seq) 是标准方法。使用 ChIP-seq 在体内绘制这种蛋白质-DNA 相互作用存在多个挑战,不仅在样品制备和测序方面,在计算分析方面也是如此。在这里,我们提供了 ChIP-seq 数据计算分析的分步指南。我们解决了 ChIP-seq 数据分析中的所有主要步骤:测序深度选择、质量检查、映射、数据归一化、重现性评估、峰调用、差异结合分析、控制假发现率、峰注释、可视化和基序分析。在我们的指南中的每个步骤中,我们讨论了最常使用的一些软件工具。我们还强调了 ChIP-seq 数据分析中每个步骤所涉及的挑战和问题。我们在图 1 中呈现了一个简洁的 ChIP-seq 数据分析工作流程,该流程补充并扩展了 ENCODE 和 modENCODE 项目的建议。工作流程中的每个步骤在以下各节中都有详细描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef55/3828144/02c892f23d0f/pcbi.1003326.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验