Suppr超能文献

基于网络的抗癌药物组合预测。

Network-based prediction of anti-cancer drug combinations.

作者信息

Jiang Jue, Wei Xuxu, Lu YuKang, Li Simin, Xu Xue

机构信息

School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China.

Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.

出版信息

Front Pharmacol. 2024 Aug 15;15:1418902. doi: 10.3389/fphar.2024.1418902. eCollection 2024.

Abstract

Drug combinations have emerged as a promising therapeutic approach in cancer treatment, aimed at overcoming drug resistance and improving the efficacy of monotherapy regimens. However, identifying effective drug combinations has traditionally been time-consuming and often dependent on chance discoveries. Therefore, there is an urgent need to explore alternative strategies to support experimental research. In this study, we propose network-based prediction models to identify potential drug combinations for 11 types of cancer. Our approach involves extracting 55,299 associations from literature and constructing human protein interactomes for each cancer type. To predict drug combinations, we measure the proximity of drug-drug relationships within the network and employ a correlation clustering framework to detect functional communities. Finally, we identify 61,754 drug combinations. Furthermore, we analyze the network configurations specific to different cancer types and identify 30 key genes and 21 pathways. The performance of these models is subsequently assessed through assays, which exhibit a significant level of agreement. These findings represent a valuable contribution to the development of network-based drug combination design strategies, presenting potential solutions to overcome drug resistance and enhance cancer treatment outcomes.

摘要

药物联合已成为癌症治疗中一种很有前景的治疗方法,旨在克服耐药性并提高单一疗法方案的疗效。然而,传统上确定有效的药物联合一直很耗时,而且往往依赖于偶然发现。因此,迫切需要探索替代策略来支持实验研究。在本研究中,我们提出基于网络的预测模型,以识别11种癌症的潜在药物联合。我们的方法包括从文献中提取55299个关联,并为每种癌症类型构建人类蛋白质相互作用组。为了预测药物联合,我们测量网络内药物-药物关系的接近度,并采用相关聚类框架来检测功能群落。最后,我们识别出61754种药物联合。此外,我们分析了不同癌症类型特有的网络配置,并识别出30个关键基因和21条通路。随后通过实验评估这些模型的性能,结果显示出显著的一致性。这些发现为基于网络的药物联合设计策略的发展做出了宝贵贡献,为克服耐药性和提高癌症治疗效果提供了潜在解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa25/11357946/3217c2612098/fphar-15-1418902-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验