Suppr超能文献

多基因风险评分在阿尔茨海默病遗传学中的应用:方法学、应用、纳入和多样性。

Polygenic Risk Scores in Alzheimer's Disease Genetics: Methodology, Applications, Inclusion, and Diversity.

机构信息

Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Alzheimers Dis. 2022;89(1):1-12. doi: 10.3233/JAD-220025.

Abstract

The success of genome-wide association studies (GWAS) completed in the last 15 years has reinforced a key fact: polygenic architecture makes a substantial contribution to variation of susceptibility to complex disease, including Alzheimer's disease. One straight-forward way to capture this architecture and predict which individuals in a population are most at risk is to calculate a polygenic risk score (PRS). This score aggregates the risk conferred across multiple genetic variants, ultimately representing an individual's predicted genetic susceptibility for a disease. PRS have received increasing attention after having been successfully used in complex traits. This has brought with it renewed attention on new methods which improve the accuracy of risk prediction. While these applications are initially informative, their utility is far from equitable: the majority of PRS models use samples heavily if not entirely of individuals of European descent. This basic approach opens concerns of health equity if applied inaccurately to other population groups, or health disparity if we fail to use them at all. In this review we will examine the methods of calculating PRS and some of their previous uses in disease prediction. We also advocate for, with supporting scientific evidence, inclusion of data from diverse populations in these existing and future studies of population risk via PRS.

摘要

在过去的 15 年中,全基因组关联研究(GWAS)的成功强化了一个关键事实:多基因结构对复杂疾病(包括阿尔茨海默病)易感性的变异有很大贡献。捕获这种结构并预测人群中哪些个体面临最大风险的一种直接方法是计算多基因风险评分(PRS)。该评分聚合了多个遗传变异所带来的风险,最终代表了个体对疾病的预测遗传易感性。PRS 在复杂性状中成功应用后,受到了越来越多的关注。这带来了对提高风险预测准确性的新方法的重新关注。虽然这些应用最初是有信息的,但它们的效用远非公平:大多数 PRS 模型使用的样本,如果不是完全来自欧洲血统的个体,也是大量的。如果这种基本方法应用不准确,将对其他人群群体造成健康公平方面的担忧,如果我们根本不使用它们,也会造成健康差距。在这篇综述中,我们将检查 PRS 的计算方法及其在疾病预测中的一些先前用途。我们还主张,在这些现有的和未来的人群风险研究中,通过 PRS 纳入来自不同人群的数据,以支持科学证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d1/9484091/67420663274d/jad-89-jad220025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验