Suppr超能文献

一种氧化铝相诱导的复合过渡穿梭体,用于稳定碳捕获循环。

An alumina phase induced composite transition shuttle to stabilize carbon capture cycles.

作者信息

Ma Xingyue, Luo Shuxuan, Hua Yunhui, Seetharaman Seshadri, Zhu Xiaobo, Hou Jingwei, Zhang Lei, Wang Wanlin, Sun Yongqi

机构信息

School of Metallurgy and Environment, Central South University, Changsha, China.

National Center for International Cooperation of Clean Metallurgy, Central South University, Changsha, China.

出版信息

Nat Commun. 2024 Aug 30;15(1):7556. doi: 10.1038/s41467-024-52016-y.

Abstract

Limiting global warming to 1.5-2 °C requires a 50-90% reduction in CO emissions in 2050, depending on different scenarios, and carbon capture, utilization, and storage is a promising technology that can help reach this objective. Calcium oxide (CaO) carbon capture is an appealing choice because of its affordability, large potential capacity, and ability to withstand the high temperatures of flue gases. However, the structural instability and capacity fading challenge its large-scale industrial applications. Here, we design a reversible reaction shuttle in CaO-based sorbents to improve the structure stability by changing the initial alumina phases. Diverse alumina phases (x-AlO) are first synthesized and utilized as the aluminum source for creating CaO@x-AlO composites. As expected, the CaO@δ-AlO composite demonstrates a carbon capture capacity of 0.43 g-CO/g-sorbent after 50 cycles, with an impressive capacity retention of 82.7%. Combined characterizations and calculations reveal that this stability improvement is attributed to a transition shuttle between CaAlO and CaAlO, which can effectively restrain the complete decompositions of those structure-stabilized intermediate phases. An economic assessment further identifies the significance of heat transfer efficiency improvement upon cycles, and control of capital/operation cost, energy price and carbon tax for a future cost-effective commercialization of current strategy.

摘要

根据不同情景,要将全球变暖限制在1.5 - 2摄氏度,到2050年需将二氧化碳排放量减少50% - 90%,而碳捕获、利用与封存是一项有前景的技术,有助于实现这一目标。氧化钙(CaO)碳捕获因其成本低、潜在容量大以及能耐受烟道气高温而颇具吸引力。然而,其结构不稳定性和容量衰减阻碍了其大规模工业应用。在此,我们在基于CaO的吸附剂中设计了一种可逆反应穿梭机制,通过改变初始氧化铝相来提高结构稳定性。首先合成了多种氧化铝相(x - AlO),并将其用作铝源来制备CaO@x - AlO复合材料。正如预期的那样,CaO@δ - AlO复合材料在50次循环后展现出0.43 g - CO/g - 吸附剂的碳捕获容量,容量保留率高达82.7%,令人印象深刻。综合表征和计算表明,这种稳定性的提高归因于CaAlO和CaAlO之间的转变穿梭机制,它能有效抑制那些结构稳定中间相的完全分解。经济评估进一步明确了提高循环时传热效率以及控制资本/运营成本、能源价格和碳税对于当前策略未来实现经济高效商业化的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd8a/11364855/3e1d7b67a13f/41467_2024_52016_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验