Dunstan Matthew T, Donat Felix, Bork Alexander H, Grey Clare P, Müller Christoph R
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland.
Chem Rev. 2021 Oct 27;121(20):12681-12745. doi: 10.1021/acs.chemrev.1c00100. Epub 2021 Aug 5.
Carbon dioxide capture and mitigation form a key part of the technological response to combat climate change and reduce CO emissions. Solid materials capable of reversibly absorbing CO have been the focus of intense research for the past two decades, with promising stability and low energy costs to implement and operate compared to the more widely used liquid amines. In this review, we explore the fundamental aspects underpinning solid CO sorbents based on alkali and alkaline earth metal oxides operating at medium to high temperature: how their structure, chemical composition, and morphology impact their performance and long-term use. Various optimization strategies are outlined to improve upon the most promising materials, and we combine recent advances across disparate scientific disciplines, including materials discovery, synthesis, and characterization, to present a coherent understanding of the mechanisms of CO absorption both at surfaces and within solid materials.
二氧化碳捕集与减排是应对气候变化和减少一氧化碳排放的技术对策的关键组成部分。在过去二十年中,能够可逆吸收一氧化碳的固体材料一直是深入研究的重点,与更广泛使用的液体胺相比,它们具有良好的稳定性,实施和运行的能源成本较低。在本综述中,我们探讨了基于碱金属和碱土金属氧化物的中高温固体一氧化碳吸附剂的基本原理:它们的结构、化学成分和形态如何影响其性能和长期使用。概述了各种优化策略以改进最有前景的材料,并且我们结合了不同科学学科的最新进展,包括材料发现、合成和表征,以连贯地理解一氧化碳在固体材料表面和内部的吸收机制。