Suppr超能文献

通过机器学习驱动的高分辨率光纤传感实现增材制造中的亚表面热测量。

Sub-surface thermal measurement in additive manufacturing via machine learning-enabled high-resolution fiber optic sensing.

作者信息

Wang Rongxuan, Wang Ruixuan, Dou Chaoran, Yang Shuo, Gnanasambandam Raghav, Wang Anbo, Kong Zhenyu James

机构信息

Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA.

Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA.

出版信息

Nat Commun. 2024 Aug 31;15(1):7568. doi: 10.1038/s41467-024-51235-7.

Abstract

Microstructures of additively manufactured metal parts are crucial since they determine the mechanical properties. The evolution of the microstructures during layer-wise printing is complex due to continuous re-melting and reheating effects. The current approach to studying this phenomenon relies on time-consuming numerical models such as finite element analysis due to the lack of effective sub-surface temperature measurement techniques. Attributed to the miniature footprint, chirped-fiber Bragg grating, a unique type of fiber optical sensor, has great potential to achieve this goal. However, using the traditional demodulation methods, its spatial resolution is limited to the millimeter level. In addition, embedding it during laser additive manufacturing is challenging since the sensor is fragile. This paper implements a machine learning-assisted approach to demodulate the optical signal to thermal distribution and significantly improve spatial resolution to 28.8 µm from the original millimeter level. A sensor embedding technique is also developed to minimize damage to the sensor and part while ensuring close contact. The case study demonstrates the excellent performance of the proposed sensor in measuring sharp thermal gradients and fast cooling rates during the laser powder bed fusion. The developed sensor has a promising potential to study the fundamental physics of metal additive manufacturing processes.

摘要

增材制造金属零件的微观结构至关重要,因为它们决定了机械性能。由于连续的重熔和再加热效应,逐层打印过程中微观结构的演变很复杂。由于缺乏有效的亚表面温度测量技术,目前研究这一现象的方法依赖于耗时的数值模型,如有限元分析。由于尺寸小巧,啁啾光纤布拉格光栅这种独特的光纤传感器在实现这一目标方面具有巨大潜力。然而,使用传统的解调方法,其空间分辨率限制在毫米级别。此外,在激光增材制造过程中嵌入该传感器具有挑战性,因为传感器很脆弱。本文采用机器学习辅助方法将光信号解调成热分布,并将空间分辨率从原来的毫米级别显著提高到28.8μm。还开发了一种传感器嵌入技术,在确保紧密接触的同时,将对传感器和零件的损坏降至最低。案例研究证明了所提出的传感器在测量激光粉末床熔融过程中的急剧热梯度和快速冷却速率方面的优异性能。所开发的传感器在研究金属增材制造过程的基本物理原理方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6fd/11365934/4174d746068b/41467_2024_51235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验