Department of Computer Science, Technical University Darmstadt, Darmstadt, Germany.
Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany.
Nat Commun. 2024 Aug 31;15(1):7590. doi: 10.1038/s41467-024-51887-5.
Neural systems have evolved not only to solve environmental challenges through internal representations but also, under social constraints, to communicate these to conspecifics. In this work, we aim to understand the structure of these internal representations and how they may be optimized to transmit pertinent information from one individual to another. Thus, we build on previous teacher-student communication protocols to analyze the formation of individual and shared abstractions and their impact on task performance. We use reinforcement learning in grid-world mazes where a teacher network passes a message to a student to improve task performance. This framework allows us to relate environmental variables with individual and shared representations. We compress high-dimensional task information within a low-dimensional representational space to mimic natural language features. In coherence with previous results, we find that providing teacher information to the student leads to a higher task completion rate and an ability to generalize tasks it has not seen before. Further, optimizing message content to maximize student reward improves information encoding, suggesting that an accurate representation in the space of messages requires bi-directional input. These results highlight the role of language as a common representation among agents and its implications on generalization capabilities.
神经系统的进化不仅是为了通过内部表示来解决环境挑战,也是为了在社会约束下将这些表示传达给同种个体。在这项工作中,我们旨在理解这些内部表示的结构,以及如何优化它们以便将相关信息从一个个体传递给另一个个体。因此,我们基于之前的师生通信协议来分析个体和共享抽象的形成,以及它们对任务表现的影响。我们在网格世界迷宫中使用强化学习,其中教师网络向学生传递消息以提高任务表现。这个框架使我们能够将环境变量与个体和共享的表示联系起来。我们将高维任务信息压缩到低维表示空间中,以模拟自然语言的特征。与之前的结果一致,我们发现向学生提供教师信息可以提高任务完成率,并使其能够概括以前没有见过的任务。此外,优化消息内容以最大化学生奖励可以改善信息编码,这表明在消息空间中进行准确表示需要双向输入。这些结果突出了语言作为代理之间的通用表示的作用,以及它对泛化能力的影响。