Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
Nucleic Acids Res. 2024 Oct 14;52(18):10823-10835. doi: 10.1093/nar/gkae729.
The thrombin binding aptamer (TBA) is a prototypical platform used to understand the impact of chemically-modified nucleotides on aptamer stability and target affinity. To provide structural insight into the experimentally-observed effects of modification size, location, and number on aptamer performance, long time-scale molecular dynamics (MD) simulations were performed on multiple binding orientations of TBA-thrombin complexes that contain a large, flexible tryptophan thymine derivative (T-W) or a truncated analogue (T-K). Depending on modification position, T-W alters aptamer-target binding orientations, fine-tunes aptamer-target interactions, strengthens networks of nucleic acid-protein contacts, and/or induces target conformational changes to enhance binding. The proximity and 5'-to-3' directionality of nucleic acid structural motifs also play integral roles in the behavior of the modifications. Modification size can differentially influence target binding by promoting more than one aptamer-target binding pose. Multiple modifications can synergistically strengthen aptamer-target binding by generating novel nucleic acid-protein structural motifs that are unobtainable for single modifications. By studying a diverse set of modified aptamers, our work uncovers design principles that must be considered in the future development of aptamers containing chemically-modified nucleotides for applications in medicine and biotechnology, highlighting the value of computational studies in nucleic acids research.
凝血酶结合适体(TBA)是一种典型的平台,用于了解化学修饰核苷酸对适体稳定性和靶标亲和力的影响。为了深入了解修饰大小、位置和数量对适体性能的实际观察到的影响,对包含大的、灵活的色氨酸胸腺嘧啶衍生物(T-W)或截断类似物(T-K)的 TBA-凝血酶复合物的多个结合构象进行了长时间尺度的分子动力学(MD)模拟。根据修饰位置,T-W 改变适体-靶标结合构象,微调适体-靶标相互作用,增强核酸-蛋白质接触网络,和/或诱导靶标构象变化以增强结合。核酸结构基序的接近性和 5'到 3'方向性也在修饰的行为中起着至关重要的作用。修饰大小可以通过促进不止一种适体-靶标结合构象来不同程度地影响靶标结合。多个修饰可以通过产生无法通过单个修饰获得的新型核酸-蛋白质结构基序来协同增强适体-靶标结合。通过研究一组不同的修饰适体,我们的工作揭示了在未来开发含有化学修饰核苷酸的适体用于医学和生物技术应用时必须考虑的设计原则,突出了计算研究在核酸研究中的价值。