Suppr超能文献

基于差异的弥散模型在脑 MRI 中的病灶检测。

Discrepancy-based diffusion models for lesion detection in brain MRI.

机构信息

Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.

出版信息

Comput Biol Med. 2024 Oct;181:109079. doi: 10.1016/j.compbiomed.2024.109079. Epub 2024 Aug 31.

Abstract

Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks, particularly in image generation. However, their notable performance heavily relies on labelled datasets, which limits their application in medical images due to the associated high-cost annotations. Current DPM-related methods for lesion detection in medical imaging, which can be categorized into two distinct approaches, primarily rely on image-level annotations. The first approach, based on anomaly detection, involves learning reference healthy brain representations and identifying anomalies based on the difference in inference results. In contrast, the second approach, resembling a segmentation task, employs only the original brain multi-modalities as prior information for generating pixel-level annotations. In this paper, our proposed model - discrepancy distribution medical diffusion (DDMD) - for lesion detection in brain MRI introduces a novel framework by incorporating distinctive discrepancy features, deviating from the conventional direct reliance on image-level annotations or the original brain modalities. In our method, the inconsistency in image-level annotations is translated into distribution discrepancies among heterogeneous samples while preserving information within homogeneous samples. This property retains pixel-wise uncertainty and facilitates an implicit ensemble of segmentation, ultimately enhancing the overall detection performance. Thorough experiments conducted on the BRATS2020 benchmark dataset containing multimodal MRI scans for brain tumour detection demonstrate the great performance of our approach in comparison to state-of-the-art methods.

摘要

扩散概率模型 (DPM) 在计算机视觉任务中表现出了显著的效果,特别是在图像生成方面。然而,它们的出色性能严重依赖于标记数据集,由于相关的高成本注释,这限制了它们在医学图像中的应用。目前用于医学成像中病变检测的与 DPM 相关的方法可以分为两种不同的方法,主要依赖于图像级别的注释。第一种方法基于异常检测,涉及学习参考健康大脑的表示,并根据推断结果的差异识别异常。相比之下,第二种方法类似于分割任务,仅使用原始的大脑多模态作为生成像素级注释的先验信息。在本文中,我们提出的用于脑 MRI 病变检测的差异分布医学扩散 (DDMD) 模型通过引入独特的差异特征,为病变检测提供了一个新的框架,这与传统的直接依赖图像级注释或原始大脑模态的方法不同。在我们的方法中,图像级注释的不一致性被转化为异质样本之间的分布差异,同时保留同质样本内的信息。这种特性保留了像素级的不确定性,并促进了分割的隐式集成,最终提高了整体检测性能。在包含用于脑肿瘤检测的多模态 MRI 扫描的 BRATS2020 基准数据集上进行的彻底实验表明,与最先进的方法相比,我们的方法具有出色的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验