Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Eur Radiol. 2023 Sep;33(9):6582-6591. doi: 10.1007/s00330-023-09583-3. Epub 2023 Apr 12.
While fully supervised learning can yield high-performing segmentation models, the effort required to manually segment large training sets limits practical utility. We investigate whether data mined line annotations can facilitate brain MRI tumor segmentation model development without requiring manually segmented training data.
In this retrospective study, a tumor detection model trained using clinical line annotations mined from PACS was leveraged with unsupervised segmentation to generate pseudo-masks of enhancing tumors on T1-weighted post-contrast images (9911 image slices; 3449 adult patients). Baseline segmentation models were trained and employed within a semi-supervised learning (SSL) framework to refine the pseudo-masks. Following each self-refinement cycle, a new model was trained and tested on a held-out set of 319 manually segmented image slices (93 adult patients), with the SSL cycles continuing until Dice score coefficient (DSC) peaked. DSCs were compared using bootstrap resampling. Utilizing the best-performing models, two inference methods were compared: (1) conventional full-image segmentation, and (2) a hybrid method augmenting full-image segmentation with detection plus image patch segmentation.
Baseline segmentation models achieved DSC of 0.768 (U-Net), 0.831 (Mask R-CNN), and 0.838 (HRNet), improving with self-refinement to 0.798, 0.871, and 0.873 (each p < 0.001), respectively. Hybrid inference outperformed full image segmentation alone: DSC 0.884 (Mask R-CNN) vs. 0.873 (HRNet), p < 0.001.
Line annotations mined from PACS can be harnessed within an automated pipeline to produce accurate brain MRI tumor segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities.
• A brain MRI tumor detection model trained using clinical line measurement annotations mined from PACS was leveraged to automatically generate tumor segmentation pseudo-masks. • An iterative self-refinement process automatically improved pseudo-mask quality, with the best-performing segmentation pipeline achieving a Dice score of 0.884 on a held-out test set. • Tumor line measurement annotations generated in routine clinical radiology practice can be harnessed to develop high-performing segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities.
虽然完全监督学习可以产生性能很高的分割模型,但手动分割大型训练集所需的工作量限制了其实际应用。我们研究了是否可以利用从 PACS 中挖掘出的临床线注释来促进脑 MRI 肿瘤分割模型的开发,而无需手动分割训练数据。
在这项回顾性研究中,我们利用从 PACS 中挖掘出的临床线注释来训练肿瘤检测模型,并利用无监督分割方法在 T1 加权对比后图像(9911 个图像切片;3449 名成年患者)上生成增强肿瘤的伪掩码。我们使用半监督学习(SSL)框架训练和应用基线分割模型,以细化伪掩码。在每个自精炼周期之后,我们都会在一组 319 个手动分割的图像切片(93 名成年患者)上训练和测试一个新模型,直到 Dice 得分系数(DSC)达到峰值。使用自举重采样比较 DSCs。利用表现最佳的模型,比较了两种推理方法:(1)全图像分割,(2)结合检测和图像补丁分割的混合方法。
基线分割模型的 DSC 分别为 0.768(U-Net)、0.831(Mask R-CNN)和 0.838(HRNet),通过自精炼分别提高到 0.798、0.871 和 0.873(均 p<0.001)。混合推理优于全图像分割:DSC 0.884(Mask R-CNN)比 0.873(HRNet),p<0.001。
从 PACS 中挖掘出的线注释可以在自动化管道中利用,在没有手动分割训练数据的情况下生成准确的脑 MRI 肿瘤分割模型,为在放射学模态中快速建立肿瘤分割能力提供了一种机制。
• 利用从 PACS 中挖掘出的临床线测量注释训练的脑 MRI 肿瘤检测模型,自动生成肿瘤分割伪掩码。• 自动迭代自精炼过程提高了伪掩码的质量,表现最好的分割流水线在一个保留的测试集上达到了 0.884 的 Dice 得分。• 在常规临床放射学实践中生成的肿瘤线测量注释可以用于开发性能较高的分割模型,而无需手动分割训练数据,为在放射学模态中快速建立肿瘤分割能力提供了一种机制。