Chang Chih-Wei, Peng Junbo, Safari Mojtaba, Salari Elahheh, Pan Shaoyan, Roper Justin, Qiu Richard L J, Gao Yuan, Shu Hui-Kuo, Mao Hui, Yang Xiaofeng
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America.
Department of Biomedical Informatics, Emory University, Atlanta, GA 30308, U nited States of America.
Phys Med Biol. 2024 Feb 5;69(4):045001. doi: 10.1088/1361-6560/ad209c.
. High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM).. DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020).. For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively.. This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.
高分辨率磁共振成像(MRI)可增强病变诊断、预后评估及轮廓描绘。然而,梯度功率和硬件限制使得无法记录薄层切片或亚毫米级分辨率的图像。此外,较长的扫描时间在临床上是不可接受的。使用统计或分析方法生成的传统高分辨率图像存在局限性,即难以捕捉具有复杂图案和结构的复杂高维图像数据。本研究旨在利用前沿的扩散概率深度学习技术创建一个框架,用于从低分辨率MRI生成高分辨率MRI,以改善去噪扩散概率模型(DDPM)的不确定性。DDPM包括两个过程。正向过程采用马尔可夫链,系统地向低分辨率MRI图像引入高斯噪声。在反向过程中,训练一个U-Net模型对正向过程图像进行去噪,并根据低分辨率对应图像的特征生成高分辨率图像。使用来自机构前列腺患者和参与2020年脑肿瘤分割挑战赛(BraTS2020)的脑患者的T2加权MRI图像对所提出的框架进行了验证。对于前列腺数据集,双三次插值模型(Bicubic)、条件生成对抗网络(CGAN)和我们提出的DDPM框架分别将低分辨率图像的噪声质量测量提高了4.4%、5.7%和12.8%。我们的方法将信噪比提高了11.7%,超过了Bicubic(9.8%)和CGAN(8.1%)。在BraTS2020数据集中,所提出的框架和Bicubic分别将分辨率降低图像的峰值信噪比提高了9.1%和5.8%。所提出的方法、CGAN和Bicubic的多尺度结构相似性指数分别为0.970±0.019、0.968±0.022和0.967±0.023。本研究探索了一种基于深度学习的扩散概率框架来提高MR图像分辨率。这样的框架可用于通过获得高分辨率图像而无需承受长扫描时间的代价来改善临床工作流程。未来的研究可能会集中在前瞻性地测试该框架在不同临床适应症中的疗效。