Yamamuro Mika, Asai Yoshiyuki, Yamada Takahiro, Kimura Yuichi, Ishii Kazunari, Kondo Yohan
Radiology Center, Kindai University Hospital, 377-2, Osaka-Sayama, Osaka, 589-8511, Japan.
Division of Positron Emission Tomography Institute of Advanced Clinical Medicine, Kindai University, 377-2, Ono-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
Med Biol Eng Comput. 2025 Jan;63(1):169-179. doi: 10.1007/s11517-024-03186-w. Epub 2024 Sep 2.
The use of breast density as a biomarker for breast cancer treatment has not been well established owing to the difficulty in measuring time-series changes in breast density. In this study, we developed a surmising model for breast density using prior mammograms through a multiple regression analysis, enabling a time series analysis of breast density. We acquired 1320 mediolateral oblique view mammograms to construct the surmising model using multiple regression analysis. The dependent variable was the breast density of the mammary gland region segmented by certified radiological technologists, and independent variables included the compressed breast thickness (CBT), exposure current times exposure second (mAs), tube voltage (kV), and patients' age. The coefficient of determination of the surmising model was 0.868. After applying the model, the correlation coefficients of the three groups based on the CBT (thin group, 18-36 mm; standard group, 38-46 mm; and thick group, 48-78 mm) were 0.913, 0.945, and 0.867, respectively, suggesting that the thick breast group had a significantly low correlation coefficient (p = 0.00231). In conclusion, breast density can be accurately surmised using the CBT, mAs, tube voltage, and patients' age, even in the absence of a mammogram image.
由于难以测量乳腺密度的时间序列变化,将乳腺密度用作乳腺癌治疗生物标志物的方法尚未得到充分确立。在本研究中,我们通过多元回归分析,利用先前的乳房X光片开发了一种乳腺密度推测模型,从而能够对乳腺密度进行时间序列分析。我们获取了1320张内外侧斜位乳房X光片,采用多元回归分析构建推测模型。因变量是由认证放射技师分割的乳腺区域的乳腺密度,自变量包括乳房压缩厚度(CBT)、曝光电流乘以曝光时间(mAs)、管电压(kV)和患者年龄。推测模型的决定系数为0.868。应用该模型后,基于CBT的三组(薄组,18 - 36毫米;标准组,38 - 46毫米;厚组,48 - 78毫米)的相关系数分别为0.913、0.945和0.867,表明厚乳房组的相关系数显著较低(p = 0.00231)。总之,即使没有乳房X光片图像,也可以使用CBT、mAs、管电压和患者年龄准确推测乳腺密度。