Suppr超能文献

用于预测复杂热电材料中超低导热率和高[此处原文缺失内容]的机器学习

Machine Learning for Predicting Ultralow Thermal Conductivity and High in Complex Thermoelectric Materials.

作者信息

Hao Yuzhou, Zuo Yuting, Zheng Jiongzhi, Hou Wenjie, Gu Hong, Wang Xiaoying, Li Xuejie, Sun Jun, Ding Xiangdong, Gao Zhibin

机构信息

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 03755, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47866-47878. doi: 10.1021/acsami.4c09043. Epub 2024 Sep 1.

Abstract

Efficient and precise calculations of thermal transport properties and figures of merit, alongside a deep comprehension of thermal transport mechanisms, are essential for the practical utilization of advanced thermoelectric materials. In this study, we explore the microscopic processes governing thermal transport in the distinguished crystalline material TlSbTe by integrating a unified thermal transport theory with machine learning-assisted self-consistent phonon calculations. Leveraging machine learning potentials, we expedite the analysis of phonon energy shifts, higher-order scattering mechanisms, and thermal conductivity arising from various contributing factors, such as population and coherence channels. Our finding unveils an exceptionally low thermal conductivity of 0.31 W m K at room temperature, a result that closely correlates with experimental observations. Notably, we observe that the off-diagonal terms of heat flux operators play a significant role in shaping the overall lattice thermal conductivity of TlSbTe, where the ultralow thermal conductivity resembles that of glass due to limited group velocities. Furthermore, we achieve a maximum value of 3.17 in the -axis orientation for -type TlSbTe at 600 K and an optimal value of 2.26 in the -axis and -axis direction for -type TlSbTe at 500 K. The crystalline TlSbTe not only showcases remarkable thermal insulation but also demonstrates impressive electrical properties owing to the dual-degeneracy phenomenon within its valence band. These results not only elucidate the underlying reasons for the exceptional thermoelectric performance of TlSbTe but also suggest potential avenues for further experimental exploration.

摘要

高效且精确地计算热输运性质和品质因数,同时深入理解热输运机制,对于先进热电材料的实际应用至关重要。在本研究中,我们通过将统一热输运理论与机器学习辅助的自洽声子计算相结合,探索了著名晶体材料TlSbTe中热输运的微观过程。利用机器学习势,我们加快了对声子能量移动、高阶散射机制以及由各种贡献因素(如占据和相干通道)引起的热导率的分析。我们的发现揭示了室温下TlSbTe的热导率异常低,仅为0.31 W m⁻¹ K⁻¹,这一结果与实验观测密切相关。值得注意的是,我们观察到热流算符的非对角项在塑造TlSbTe的整体晶格热导率方面起着重要作用,由于群速度有限,其超低热导率类似于玻璃。此外,我们在600 K时,p型TlSbTe在x轴方向的ZT值达到最大值3.17,在500 K时,n型TlSbTe在x轴和y轴方向的ZT最佳值为2.26。晶体TlSbTe不仅表现出卓越的隔热性能,还因其价带内的双简并现象展现出令人印象深刻的电学性质。这些结果不仅阐明了TlSbTe具有优异热电性能的潜在原因,还为进一步的实验探索指明了潜在途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验