Suppr超能文献

用于高导热材料中热输运和声子高阶非简谐性的机器学习:以砷化硼为例

Machine Learning for Thermal Transport and Phonon High-order Anharmonicity in High Thermal Conductivity Materials: A Case Study in Boron Arsenide.

作者信息

Dai Lingyun, Li Man, Hu Yongjie

机构信息

School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, United States.

出版信息

Phys Rev Mater. 2025 Apr;9(4). doi: 10.1103/physrevmaterials.9.045403. Epub 2025 Apr 25.

Abstract

Materials with high thermal conductivity are at the forefront of research in advancing thermal management, as benchmarked by the recent discovery of cubic BAs. In this study, we utilized BAs as a prototype material to assess the predictive capabilities of a machine learning approach for thermal transport, particularly in scenarios where high-order phonon anharmonicity plays a crucial role. We developed a training methodology for the moment tensor potential based on ab initio molecular dynamics, which provides accurate predictions of atomic energies, forces, stresses, phonon dispersion relations, elastic modulus, and thermal expansion coefficients. Our approach yields quantitative predictions of thermal conductivity and phonon mean free paths, closely matching first-principles calculations and experimental measurements under varied conditions and size confinements. The predictions of pressure-dependent thermal conductivity, taking into account complex interactions from phonon anharmonicity, isotope scattering, and defect scattering, reveal intrinsic behavior resulting from competing 3-phonon and 4-phonon processes in high-quality BAs, while also showing weak pressure dependence in samples dominated by defects. This study explores the feasibility of using machine learning for simulating high-order phonon scattering and demonstrates its potential as a high-throughput computational approach in advancing thermal management solutions.

摘要

具有高导热率的材料处于推进热管理研究的前沿,立方相BAs的最新发现就是一个例证。在本研究中,我们将BAs用作原型材料,以评估机器学习方法对热输运的预测能力,特别是在高阶声子非谐性起关键作用的情况下。我们基于从头算分子动力学开发了一种矩张量势的训练方法,该方法能准确预测原子能量、力、应力、声子色散关系、弹性模量和热膨胀系数。我们的方法能对热导率和声子平均自由程进行定量预测,在不同条件和尺寸限制下与第一性原理计算和实验测量结果紧密匹配。考虑到声子非谐性、同位素散射和缺陷散射的复杂相互作用,对压力依赖热导率的预测揭示了高质量BAs中3声子和4声子过程竞争导致的内在行为,同时也表明在以缺陷为主的样品中压力依赖性较弱。本研究探讨了使用机器学习模拟高阶声子散射的可行性,并展示了其作为高通量计算方法在推进热管理解决方案方面的潜力。

相似文献

3
Anomalous thermal transport under high pressure in boron arsenide.砷化硼在高压下的反常热输运
Nature. 2022 Dec;612(7940):459-464. doi: 10.1038/s41586-022-05381-x. Epub 2022 Nov 23.
4
Experimental observation of high thermal conductivity in boron arsenide.硼砷化镓中高热导率的实验观察。
Science. 2018 Aug 10;361(6402):575-578. doi: 10.1126/science.aat5522. Epub 2018 Jul 5.

本文引用的文献

3
Electrically gated molecular thermal switch.电控分子热开关
Science. 2023 Nov 3;382(6670):585-589. doi: 10.1126/science.abo4297. Epub 2023 Nov 2.
6
Anomalous thermal transport under high pressure in boron arsenide.砷化硼在高压下的反常热输运
Nature. 2022 Dec;612(7940):459-464. doi: 10.1038/s41586-022-05381-x. Epub 2022 Nov 23.
10
Performance and Cost Assessment of Machine Learning Interatomic Potentials.机器学习原子间势的性能与成本评估
J Phys Chem A. 2020 Jan 30;124(4):731-745. doi: 10.1021/acs.jpca.9b08723. Epub 2020 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验