Suppr超能文献

利用细胞生物电测量对维持性血液透析患者实验室检查结果进行分类

Classification of Laboratory Test Outcomes for Maintenance Hemodialysis Patients Using Cellular Bioelectrical Measurements.

作者信息

Chen Hanzhi, Zhou Leting, Yan Meilin, Li Cheng, Liu Bin, Liu Xiaobin, Shan Weiwei, Guo Ya, Zhang Zhijian, Wang Liang

机构信息

Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, People's Republic of China.

Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.

出版信息

Int J Gen Med. 2024 Aug 27;17:3733-3743. doi: 10.2147/IJGM.S471161. eCollection 2024.

Abstract

BACKGROUND

End-stage kidney disease (ESKD) patients often face complications like anemia, malnutrition, and cardiovascular issues. Serological tests, which are uncomfortable and not frequently conducted, assist in medical assessments. A non-invasive, convenient method for determining these test results would be beneficial for monitoring patient health.

OBJECTIVE

This study develops machine learning models to estimate key serological test results using non-invasive cellular bioelectrical impedance measurements, a routine procedure for ESKD patients.

METHODS

The study employs two machine learning models, Support Vector Machine (SVM) and Random Forest (RF), to determine key serological tests by classifying cell bioelectrical indicators. Data from 688 patients, comprising 3,872 biochemical-bioelectrical records, were used for model validation.

RESULTS

Both SVM and RF models effectively categorized key serological results (albumin, phosphorus, parathyroid hormone) into low, normal, and high. RF generally outperformed SVM, except in classifying calcium levels in women.

CONCLUSION

The machine learning models effectively classified serological test results for maintenance hemodialysis patients using cellular bioelectrical indicators, therefore can help in making judgments about physicochemical indicators using electrical signals, thereby reducing the frequency of serological tests.

摘要

背景

终末期肾病(ESKD)患者常面临贫血、营养不良和心血管问题等并发症。血清学检测虽有助于医学评估,但操作不便且不常进行。一种无创、便捷的确定这些检测结果的方法将有助于监测患者健康。

目的

本研究开发机器学习模型,利用无创细胞生物电阻抗测量(这是ESKD患者的常规检查)来估计关键血清学检测结果。

方法

本研究采用支持向量机(SVM)和随机森林(RF)两种机器学习模型,通过对细胞生物电指标进行分类来确定关键血清学检测。来自688例患者的3872条生化 - 生物电记录数据用于模型验证。

结果

SVM和RF模型均有效地将关键血清学结果(白蛋白、磷、甲状旁腺激素)分为低、正常和高三类。除了对女性钙水平的分类外,RF总体表现优于SVM。

结论

机器学习模型利用细胞生物电指标有效地对维持性血液透析患者的血清学检测结果进行了分类,因此有助于通过电信号对理化指标进行判断,从而减少血清学检测的频率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd1/11365496/26d9d1e5bf0a/IJGM-17-3733-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验