Suppr超能文献

用于逃避吞噬作用的巨噬细胞膜包被盘状聚合物颗粒

Macrophage membrane coated discoidal polymeric particles for evading phagocytosis.

作者信息

Aryal Susmita, Park Sanghyo, Cho Hyeyoun, Choi Kang Chan, Choi Moon Jung, Park Yong Serk, Key Jaehong

机构信息

Department of Biomedical Engineering, Yonsei University, Mirae Campus, Wonju, Korea.

Department of Biomedical Laboratory Science, Yonsei University, Mirae Campus, Wonju, Korea.

出版信息

Biomed Eng Lett. 2024 Jun 12;14(5):1113-1124. doi: 10.1007/s13534-024-00396-x. eCollection 2024 Sep.

Abstract

UNLABELLED

The purpose of this study was to investigate the potential of discoidal polymeric particles (DPPs) coated with macrophage membranes as a novel drug delivery system. The study aimed to determine whether these coated particles could reduce phagocytosis, and target specific organs, thereby enhancing drug delivery efficacy. In this study, discoidal polymeric particles (DPPs) were synthesized by a top-down fabrication method serving as the core drug delivery platform. The method involved the fusion of macrophage cell membrane vesicles with DPPs, resulting in macrophage membrane coated DPPs. This process aimed to translocate membrane proteins from macrophages onto the DPPs, rendering them structurally and functionally like host cells. The results of this study showed that macrophage membrane coated DPPs exhibited a threefold reduction in phagocytosis compared to bare DPPs. This reduction in phagocytosis indicated the potential of these coated DPPs to evade immune clearance. Time-lapse microscopy further illustrated the distinct interactions of macrophage membrane coated DPPs with immune cells. Biodistribution studies revealed that these coated particles displayed preferential accumulation in the lungs at early time points, followed by sustained accumulation in the liver. In conclusion, this study demonstrated that macrophage membrane coated DPPs represent a unique and promising strategy for drug delivery. These particles can mimic cell surfaces, reduce phagocytosis, and target specific organs. This opens exciting avenues for improving drug delivery efficacy in diverse therapeutic contexts. These findings advance our understanding of nanomedicine's potential in personalized therapies and targeted drug delivery strategies.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13534-024-00396-x.

摘要

未标注

本研究的目的是研究包被巨噬细胞膜的盘状聚合物颗粒(DPPs)作为一种新型药物递送系统的潜力。该研究旨在确定这些包被颗粒是否可以减少吞噬作用,并靶向特定器官,从而提高药物递送效率。在本研究中,通过自上而下的制备方法合成了盘状聚合物颗粒(DPPs),作为核心药物递送平台。该方法包括将巨噬细胞膜囊泡与DPPs融合,从而得到包被巨噬细胞膜的DPPs。这一过程旨在将巨噬细胞的膜蛋白转移到DPPs上,使其在结构和功能上类似于宿主细胞。本研究结果表明,与未包被的DPPs相比,包被巨噬细胞膜的DPPs吞噬作用降低了三倍。吞噬作用的降低表明这些包被的DPPs具有逃避免疫清除的潜力。延时显微镜进一步说明了包被巨噬细胞膜的DPPs与免疫细胞之间独特的相互作用。生物分布研究表明,这些包被颗粒在早期优先在肺部积累,随后在肝脏中持续积累。总之,本研究表明,包被巨噬细胞膜的DPPs代表了一种独特且有前景的药物递送策略。这些颗粒可以模拟细胞表面,减少吞噬作用,并靶向特定器官。这为在不同治疗环境中提高药物递送效率开辟了令人兴奋的途径。这些发现推进了我们对纳米医学在个性化治疗和靶向药物递送策略中潜力的理解。

补充信息

在线版本包含可在10.1007/s13534-024-00396-x获取的补充材料。

相似文献

1
3
Biomimetic surface modification of discoidal polymeric particles.碟状聚合物粒子的仿生表面修饰。
Nanomedicine. 2019 Feb;16:79-87. doi: 10.1016/j.nano.2018.11.011. Epub 2018 Dec 7.

本文引用的文献

2
Advances in Lung Cancer Treatment Using Nanomedicines.肺癌纳米药物治疗进展
ACS Omega. 2022 Dec 29;8(1):10-41. doi: 10.1021/acsomega.2c04078. eCollection 2023 Jan 10.
4
Cell membrane coated-nanoparticles for cancer immunotherapy.用于癌症免疫治疗的细胞膜包被纳米颗粒。
Acta Pharm Sin B. 2022 Aug;12(8):3233-3254. doi: 10.1016/j.apsb.2022.02.023. Epub 2022 Feb 28.
7
Cell membrane-covered nanoparticles as biomaterials.细胞膜包覆的纳米颗粒作为生物材料。
Natl Sci Rev. 2019 May;6(3):551-561. doi: 10.1093/nsr/nwz037. Epub 2019 Mar 14.
10
Engineering precision nanoparticles for drug delivery.工程化精准纳米颗粒用于药物递送。
Nat Rev Drug Discov. 2021 Feb;20(2):101-124. doi: 10.1038/s41573-020-0090-8. Epub 2020 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验