Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
Small Methods. 2022 Aug;6(8):e2200289. doi: 10.1002/smtd.202200289. Epub 2022 Jun 29.
Biomimetic approaches utilize natural cell membrane-derived nanovesicles to camouflage nanoparticles to circumvent some limitations of nanoscale materials. This emergent cell membrane-coating technology is inspired by naturally occurring intercellular interactions, to efficiently guide nanostructures to the desired locations, thereby increasing both therapeutic efficacy and safety. In addition, the intrinsic biocompatibility of cell membranes allows the crossing of biological barriers and avoids elimination by the immune system. This results in enhanced blood circulation time and lower toxicity in vivo. Macrophages are the major phagocytic cells of the innate immune system. They are equipped with a complex repertoire of surface receptors, enabling them to respond to biological signals, and to exhibit a natural tropism to inflammatory sites and tumorous tissues. Macrophage cell membrane-functionalized nanosystems are designed to combine the advantages of both macrophages and nanomaterials, improving the ability of those nanosystems to reach target sites. Recent studies have demonstrated the potential of these biomimetic nanosystems for targeted delivery of drugs and imaging agents to tumors, inflammatory, and infected sites. The present review covers the preparation and biomedical applications of macrophage cell membrane-coated nanosystems. Challenges and future perspectives in the development of these membrane-coated nanosystems are addressed.
仿生方法利用天然细胞膜衍生的纳米囊泡来伪装纳米颗粒,以规避纳米材料的一些局限性。这种新兴的细胞膜涂层技术受到自然发生的细胞间相互作用的启发,能够有效地引导纳米结构到达所需的位置,从而提高治疗效果和安全性。此外,细胞膜的固有生物相容性允许其穿过生物屏障并避免被免疫系统消除。这导致血液循环时间延长,体内毒性降低。巨噬细胞是先天免疫系统的主要吞噬细胞。它们配备了一系列复杂的表面受体,使它们能够对生物信号做出反应,并表现出对炎症部位和肿瘤组织的天然趋向性。巨噬细胞膜功能化纳米系统旨在结合巨噬细胞和纳米材料的优势,提高这些纳米系统到达靶位的能力。最近的研究表明,这些仿生纳米系统在靶向递送至肿瘤、炎症和感染部位的药物和成像剂方面具有潜力。本综述涵盖了巨噬细胞膜包被纳米系统的制备和生物医学应用。讨论了这些膜包被纳米系统发展面临的挑战和未来展望。